Solutions to HW2

- 2. The fifth roots of $x^5 1 = (x 1)m(x)$ in \mathbb{C} are $1, \zeta, \zeta^2, \zeta^3, \zeta^4$. Since 1 is the root of x 1, this means that $\zeta, \zeta^2, \zeta^3, \zeta^4$ must be the roots of m(x); so $m(x) = (x \zeta)(x \zeta^2)(x \zeta^3)(x \zeta^4)$.
- 1. By #2, m(x) has no real roots, so it has no roots in \mathbb{Q} , so it has no linear factors. If m(x) factors into quadratic factors in $\mathbb{Q}[x]$, then such a factorization is obtainable in $\mathbb{Z}[x]$ and

$$m(x) = x^4 + x^3 + x^2 + x + 1 = (x^2 + ax \pm 1)(x^2 + bx \pm 1)$$

where a + b = 1. Now both the '±' signs must be positive and

$$m(x) = x^4 + x^3 + x^2 + x + 1 = (x^2 + ax + 1)(x^2 + (1-a)x + 1)$$
$$= x^4 + x^3 + (2+a-a^2)x^2 + x + 1.$$

However, this has only irrational solutions $a = \frac{1 \pm \sqrt{5}}{2}$, a contradiction. So m(x) is irreducible in $\mathbb{Q}[x]$.

If you studied Eisenstein's Criterion in a previous Ring Theory course, this method also shows that m(x) is irreducible in $\mathbb{Q}[x]$.

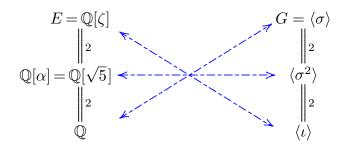
3. The four roots of m(x) are permuted by σ as $\zeta \mapsto \zeta^2 \mapsto \zeta^4 \mapsto \zeta^3 \mapsto \zeta$, so

$$\begin{split} \sigma(a+b\zeta+c\zeta^2+d\zeta^3) &= a+b\zeta^2+c\zeta^4+d\zeta\\ &= a+b\zeta^2-c(1+\zeta+\zeta^2+\zeta^3)+d\zeta\\ &= (a-c)+(d-c)\zeta+(b-c)\zeta^2-c\zeta^3. \end{split}$$

- 4. From $\alpha^2 = (\zeta + \zeta^4)^2 = 2 + \zeta^2 + \zeta^3 = 1 \zeta \zeta^4 = 1 \alpha$, we see that α is a root of $g(x) = x^2 + x 1$. Thus $\alpha = \frac{1}{2} \left(-1 \pm \sqrt{5} \right)$. Since $\alpha \notin \mathbb{Q}$, g(x) is irreducible in $\mathbb{Q}[x]$; so it is the minimal polynomial of α . Using de Moivre's formula, $\alpha = 2\cos\frac{2\pi}{5} > 0$, so we must have the positive root of g(x), i.e. $\alpha = \frac{1}{2} \left(-1 + \sqrt{5} \right)$. This shows that α is real; but this was already evident from the start since $\alpha = \zeta + \overline{\zeta}$, which is twice the real part of ζ .
- 5. Since $\alpha = \frac{1}{2} \left(-1 + \sqrt{5} \right) \in \mathbb{Q}[\sqrt{5}]$, we have $\mathbb{Q}[\alpha] \subseteq \mathbb{Q}[\sqrt{5}]$. But also, $\sqrt{5} = 1 + 2\alpha \in \mathbb{Q}[\alpha]$, so $\mathbb{Q}[\sqrt{5}] \subseteq \mathbb{Q}[\alpha]$. Thus equality holds: $\mathbb{Q}[\alpha] = \mathbb{Q}[\sqrt{5}]$.

Also,
$$\sigma(\alpha) = \sigma(\zeta + \zeta^4) = \zeta^2 + \zeta^3 = -1 - \zeta - \zeta^4 = -1 - \alpha$$
. So $\sigma(\sqrt{5}) = \sigma(1 + 2\alpha) = 1 + 2(-1 - \alpha) = -1 - 2\alpha = -\sqrt{5}$.

6. The Hasse diagrams of $E = \mathbb{Q}[\zeta]$ and $G = \operatorname{Aut} E = \langle \sigma \rangle = \{\iota, \sigma, \sigma^2, \sigma^2\}$ are



It is easiest to first enumerate the subgroups of G, since G is just a cyclic group of order 4. Next, match each subgroup of G with its fixed field in E. For example, $\sigma^2(\sqrt{5}) = \sigma(\sigma(\sqrt{5})) = \sigma(-\sqrt{5}) = \sqrt{5}$ which generates the intermediate subfield $\mathbb{Q}[\sqrt{5}]$. The Galois correspondence is indicated by the blue arrows.

7. From #4, $\alpha = 2\cos\frac{2\pi}{5} = \frac{1}{2}(-1+\sqrt{5})$, so $\cos 72^{\circ} = \cos\frac{2\pi}{5} = \frac{\alpha}{2} = \frac{1}{4}(-1+\sqrt{5}) \approx 0.30902$.