

Solutions to HW1

- 1. If f(x) is reducible in $\mathbb{Q}[x]$, then f(x) is reducible in $\mathbb{Z}[x]$ and so factors as $f(x) = (x-a)(x^2+bx+c)$ for some $a, b, c \in \mathbb{Z}$; but then ac = 3 and f(x) has a root $a \in \{-3, -1, 1, 3\}$. However, f(a) = -24, -2, -4, 18 for a = -3, -1, 1, 3 respectively. This is a contradiction; so in fact $f(x) \in \mathbb{Q}[x]$ must be irreducible.
- 2. The polynomial f(x) has exactly one real root, using methods from Calculus I. From the sign of $f'(x) = 3x^2 - 2 = 3(x + \sqrt{2/3})(x - \sqrt{2/3})$, we see that f is increasing on $(-\infty, -\sqrt{2/3})$ and on $(\sqrt{2/3}, \infty)$, and decreasing on $(-\sqrt{2/3}, \sqrt{2/3})$. Since $f(-\sqrt{2/3}) = \frac{4\sqrt{6}-27}{6} < 0$, f is negative on $(-\infty, \sqrt{2/3}]$. Since f is increasing on $(\sqrt{2/3}, \infty)$, it has at most one root on that interval. However, we have seen (in #1) that f changes sign, so it has exactly one real root.
- 3. From $\theta^3 = 2\theta + 3$ we obtain $\theta^4 = 2\theta^2 + 3\theta$.
 - (a) $\alpha + \beta = 2\theta^2 + \theta 2$.
 - (b) $\alpha \beta = -\theta 4$.

(c)
$$\alpha\beta = \theta^4 + \theta^3 - 2\theta^2 - 3\theta - 3 = (2\theta^2 + 3\theta) + (2\theta + 3) - 2\theta^2 - 3\theta - 3 = 2\theta$$
.

(d) $\frac{\alpha}{\beta} = a\theta^2 + b\theta + c$ yields

$$\alpha = (a\theta^2 + b\theta + c)(\theta^2 + \theta + 1) = (3a + b + c)\theta^2 + (5a + 3b + c)\theta + (3a + 3b + c).$$

Solving this system of three linear equations gives the unique solution $(a, b, c) = (\frac{3}{2}, -2, -\frac{3}{2})$; thus $\frac{\alpha}{\beta} = \frac{3}{2}\theta^2 - 2\theta - \frac{3}{2}$.

4. We have $\alpha^2 = (\theta^2 - 3)^2 = (2\theta^2 + 3\theta) - 6\theta^2 + 9 = -4\theta^2 + 3\theta + 9$; and similarly, $\alpha^3 = (-4\theta^2 + 3\theta + 9)(\theta^2 - 3) = 13\theta^2 - 15\theta - 18$. We seek $a, b, c \in \mathbb{Q}$ such that $\alpha^3 + a\alpha^2 + b\alpha + c = (13\theta^2 - 15\theta - 18) + a(-4\theta^2 + 3\theta + 9) + b(\theta^2 - 3) + c = 0$. Collecting terms, we obtain a linear system in a, b, c, which has a unique solution (a, b, c) = (5, 7, -6). Thus the minimal polynomial of α over \mathbb{Q} is $x^3 + 5x^2 + 7x - 6$.

Check: We may evaluate the expressions in #3,4 using any of the three roots of f(x). For convenience, we try the real root $\theta \approx 1.893289196$, $\alpha \approx 0.58454398$, $\beta \approx 6.477833176$. This gives excellent numerical agreement for our answers in #3,4.

5. By the method described in class, we obtain a companion matrix for f(x), namely $A = \begin{bmatrix} 0 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$. By construction, the characteristic polynomial of A is $\det(xI - A) = f(x)$; and so by the Cayley-Hamilton Theorem, f(A) - 0. An explicit isomorphism $F \to K$, $\mathbb{Q}[\theta] \to \mathbb{Q}[A]$ is determined by $\theta \mapsto A$. This is the map $a + b\theta + c\theta^2 \mapsto aI + bA + cA^2$ for all $a, b, c \in \mathbb{Q}$.