
Some Consequences of Field Characteristic

Recall that a field F has characteristic zero if

na := a+ a+ · · ·+ a︸ ︷︷ ︸
n

6= 0

for all a ∈ F and every natural number n > 1. If na = 0 for some nonzero a ∈ F and n > 1,

then the smallest positive n for which this occurs is a prime p, called the characteristic

of F . The unique smallest subfield of F is either Q or Fp, according as charF = 0 or p.

This unique smallest subfield of F is called the prime subfield of F . Every subfield of F

contains the prime subfield.

Theorem 1. Let F be a field of prime characteristic p. Then the map a 7→ ap is a

one-to-one homomorphism of F .

Proof. Clearly (ab)p = apbp for all a, b ∈ F , and 1p = 1. Also

(a+ b)p = ap + pap−1b+
(
p
2

)
ap−2b2 + · · ·+ pabp−1 + bp = ap + bp

since the binomial coefficients
(
p
k

)
all vanish for k = 1, 2, . . . , p−1. Thus a 7→ ap is a

homomorphism of rings with identity. Now the kernel of this homomorphism consists of

all a ∈ F such that ap = 0, i.e. a = 0; so the homomorphism is one-to-one.

Theorem 2. If F is a finite field, then |F | = pr for some prime p and integer r > 1.

Proof. If |F | < ∞ then F has no subfield isomorphic to Q, so the prime subfield of F

is Fp for some prime p. Let r = [F : Fp], so that F has a basis {α1, α2, . . . , αr} over Fp.

Elements of F are uniquely represented in the form

a1α1 + a2α2 + · · ·+ arαr, ai ∈ Fp .
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There are exactly pr such linear combinations, so |F | = pr.

If |F | = pr then the map a 7→ ap is in fact an automorphism of F . (It is one-to-one

by Theorem 1; but since F is finite, every one-to-one map is also onto.)

For example, the field F4 = {0, 1, α, β} has characteristic 2; it is an extension of degree

2 of its prime subfield F2 = {0, 1}. We have seen that the map a 7→ a2 is an automorphism

of F4. In fact F4 has just two automorphisms, the identity map and the map a 7→ a2.

Consider also the field F25 = F5[
√

2] = {a + b
√

2 : a, b ∈ F5}. This field has just

two automorphisms, the identity and the map x 7→ x5 which in fact is just the familiar

‘conjugation’ map since

(a+ b
√

2)5 = a5 + b5(
√

2)5 = a− b
√

2.

(Note that
√

2
5

= 4
√

2 = −
√

2.)

For every prime p and integer r > 1, it may be shown that there is a field of order

q = pr; and it is unique up to isomorphism. This field is denoted Fq. It has exactly r

automorphisms, namely 1, σ, σ2, . . . , σr−1 where σ : x 7→ xp. Note that σi : x 7→ xp
i

.

If F is an infinite field of prime characteristic p, then the monomorphism σ : x 7→ xp

may or may not be onto; for example if F = Fp(t) or Fp((t)), then σ is not onto; its image

is the subfield Fp(tp) or Fp((tp)) respectively, a proper subfield isomorphic to F . This

observation leads into the next topic:

Consider a polynomial f(t) ∈ F [t], and let α ∈ E ⊇ F where E is an extension field.

We say α is a root of multiplicity k if (t−α)k divides f(t) in E[t], but (t−α)k+1 does not

divide f(t). Every root is either a simple root (i.e. a root of multiplicity 1) or a multiple

root (i.e. a root of multiplicity at least 2). If f(t) ∈ F [t] is irreducible over F , can f(t)

have a multiple root in an extension field E? It depends.

Theorem 3. Suppose f(t) ∈ F [t] is irreducible over F . If F has characteristic zero,

then f(t) has no multiple roots in any extension field E ⊇ F .

Proof. Let f(t) = a0 + a1t + · · · + ant
n ∈ F [t] where ai ∈ F with an 6= 0, n > 1. If

f has a multiple root α ∈ E ⊇ F , then f(t) = (t − α)2g(t) for some g(t) ∈ E[t], so

f ′(t) = 2(t−α)g(t) + (t−α)2g′(t) and f ′(α) = 0. Assuming charF = 0, this gives f ′(t) =

a1 +2a2t+ · · ·+nant
n−1 ∈ F [t] where nan 6= 0 so deg f ′(t) = n−1 and gcd(f(t), f ′(t)) = 1

since f(t) is irreducible. By the Extended Euclidean Algorithm,

u(t)f(t) + v(t)f ′(t) = 1
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for some u(t), v(t) ∈ F [t] so 0 = u(α)f(α) + v(α)f ′(α) = 1, a contradiction.

The same conclusion holds if E is finite. However, if E is an infinite field of prime

characteristic p, then the conclusion fails: consider E = Fp(x) with subfield F = Fp(xp).

Then the polynomial f(t) = tp−xp ∈ F [t] is irreducible over F , but factors as f(t) = (t−x)p

over E, by Theorem 1. (You should regard x as a constant here, and t as the variable.)

Note that f ′(t) = 0 in this case so gcd(f(t), f ′(t)) = f(t); for this reason, the proof of

Theorem 3 doesn’t apply here.
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