

Solutions to Optional Test 2 April 2023

- 1. (a) $\binom{9+5-1}{5-1}$ $\binom{+5-1}{5-1} = \binom{13}{4}$ $\binom{13}{4} = 715$
	- (b) First take one M&M of each color, then select four more M&M's at random. There are $\binom{4+5-1}{5-1}$ $\binom{+5-1}{5-1} = \binom{8}{4}$ $_{4}^{8}$) = 70 ways to do this.
- 2. (a) $a_n = 1, 2, 3, 4, 5, 6$ for $n = 0, 1, 2, 3, 4, 5$ respectively. For example, the four 01-free bitstrings of length three are 000, 100, 110, 111. In general, $a_n = n+1$.
	- (b) $\sum_{n=1}^{\infty}$ $n=0$ $a_n x^n = \sum_{n=1}^{\infty}$ $n=0$ $(n+1)x^n = \frac{d}{dx}$ $\frac{d}{dx}$ \sum_{1}^{∞} $n=0$ $x^{n+1} = \frac{d}{dx} \left(\frac{x}{1-x} \right)$ $\frac{x}{1-x}$ = $\frac{1}{(1-x)}$ $\frac{1}{(1-x)^2}$. Alternatively, $1+2x+3x^2+4x^3+\cdots = (1+x+x^2+x^3+\cdots)(1+x+x^2+x^3+\cdots) = \frac{1}{(1-x)^2}.$
	- (c) The graph $\phi^{(n)}$ of \mathbb{C} \rightarrow \mathbb{C} print $\phi^{(n)}$ has the required properties. Its adjacency matrix is $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 1 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. It has exactly $n+1$ walks starting at vertex 1. As each walk is traversed, a 01-free bitstring of length n is printed out; and this output uniquely identifies the walk that it came from. From $W(x) = (I - xA)^{-1}$ $\left[\begin{array}{c} 1-x \\ 0 \end{array} \right]$ 0 $-x$ $\left[\begin{matrix} -x \\ 1-x \end{matrix}\right]^{-1} = \frac{1}{(1-x)^2}$ $\frac{1}{(1-x)^2} \begin{bmatrix} 1-x \\ 0 \end{bmatrix}$ 0 x $\begin{bmatrix} x \\ 1-x \end{bmatrix}$, we add the two entries in the first row to get $w(x) = \frac{1}{(1-x)^2}$; and this gives yet another proof of the formula for the generating function.
- 3. (a) 2^{2n}
	- (b) There are $\binom{2n}{n}$ $\binom{2n}{n}$ strings of length 2n over the binary alphabet $\{H, T\}$ having n of each letter. The probability that the player breaks even is $\frac{1}{2^{2n}}\binom{2n}{n}$ $\binom{2n}{n}.$
	- (c) The probability of *not* breaking even is $1 \frac{1}{2^2}$ $rac{1}{2^{2n}}\binom{2n}{n}$ $\binom{2n}{n}$. By symmetry, this equals twice the probability of making money. So the probability of making money is 1 $\frac{1}{2}\left[1-\frac{1}{2^2}\right]$ $rac{1}{2^{2n}}\binom{2n}{n}$ ${n \choose n}$ (which is the same as the probability of losing money).
	- (d) The sequences of H's and T's for which the player never goes into debt and finishes after $2n$ coin flips by breaking even, correspond exactly to Dyck paths of length $2n$ if one replaces H and T by E and N respectively. The number of such sequences is the Catalan number $C_n = \frac{1}{n+1} \binom{2n}{n}$ $\binom{2n}{n}$. The probability of obtaining such a sequence by chance with 2n coin flips, is $\frac{C_n}{2^{2n}} = \frac{1}{2^{2n}(n)}$ $\frac{1}{2^{2n}(n+1)}\binom{2n}{n}$ $\binom{2n}{n}$.
- 4. Use $(1+x)^n = \sum_{k=0}^n {n \choose k}$ $\binom{n}{k}x^k$.
	- (a) $(1+1)^{10} = 2^{10} = 1024$
	- (b) $(1-1)^{10} = 0^{10} = 0$
	- (c) $(1+2)^{10} = 3^{10} = 59,049$

(d) Let
$$
S = 0 {10 \choose 0} + 1 {10 \choose 1} + 2 {10 \choose 2} + 3 {10 \choose 3} + \cdots + 10 {10 \choose 10}
$$

= $10 {10 \choose 10} + 9 {10 \choose 9} + 8 {10 \choose 8} + 7 {10 \choose 7} + \cdots + 0 {10 \choose 0}.$

Adding these two expressions for S and using the identity $\binom{10}{k}$ $\binom{10}{k} = \binom{10}{10-1}$ $\binom{10}{10-k}$ gives $2S = 10\left[\binom{10}{0} + \binom{10}{1}\right]$ $\binom{10}{1} + \binom{10}{2}$ $\binom{10}{2} + \binom{10}{3}$ $\binom{10}{3} + \cdots + \binom{10}{10} = 10 \cdot 2^{10} = 10240$ and so $S = 5,120$.

- 5. (a) F (b) T (c) T (d) T (e) F (f) T (g) T (h) T (i) F (j) T Here are some remarks and partial explanations for answers in $#5$:
	- (a) The constant function $f : [2] \to [2]$ defined by $f(1) = f(2) = 1$ is neither injective nor surjective.
	- (b) Suppose $\sum_{n=1}^{\infty}$ $k=0$ $a_k x^k = \frac{g(x)}{1 - c_1 x - c_2 x^2 - \cdots - c_d x^d}$. We cross-multiply to clear the denominator, giving $(1 - c_1x - c_2x^2 - \cdots - c_dx^d)(a_0 + a_1x + a_2x^2 + \cdots) = g(x)$. For all $n \geq \max\{d, 1 + \deg g(x)\}\$, comparing coefficients of x^n on both sides gives $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_d a_{n-d}.$
	- (c) The walks of length 2 from x to x all have the form $x \sim y \sim x$ where y ranges over the k neighbors of x .
	- (d) The number of ternary strings of length n is $3ⁿ$, and the generating function for this sequence is the geometric series $\frac{1}{1-3x} = \sum_{n=1}^{\infty}$ $n=0$ $(3x)^n$.
	- (e) The binomial coefficient $\binom{n+20}{n}$ ${n+20 \choose 2} = {n+20 \choose 20} = \frac{1}{20!}(n+1)(n+2)\cdots(n+20)$ is a polynomial in n (of degree 20).
	- (f) Recall that $(1-x)^{-m} = \sum_{n=0}^{\infty}$ $k=0$ ${-m \choose k} (-x)^k = \sum_{k=0}^{\infty}$ $k=0$ $\binom{m+k-1}{k}x^k$, as shown in class. (This is the generating function for one of our important sequences.)
	- (g) $\sum_{n=1}^{\infty}$ $n=0$ $(a_n+b_n)x^n = \sum_{n=0}^{\infty}$ $n=0$ $a_n x^n + \sum_{n=1}^{\infty}$ $n=0$ $b_n x^n$.
	- (h) There are *n* choices for the first vertex in a walk, and $n-1$ choices for each of the remaining vertices, so altogether $n(n-1)^{n-1}$ walks of length n in K_n .
	- (i) The generating function $F(x) = \frac{1+x}{1-x-x^2} \to 0$ as $x \to \infty$. Even if you don't remember the exact form of the generating function in this case, there is no rational function $F(x)$ which grows at an exponential rate as $x \to \infty$.
	- (j) This is one of the main assertions of the Spectral Theorem.