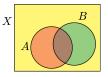


Solutions to the Exam

May, 2023

- 1. (a) $26^8 = 208,827,064,576$. (Don't bother with these large decimal representations! I'm only working them out in case someone tries to answer that way.)
 - (b) If X is the set of all passwords, A is the set of all passwords using no letters, and B is the set of passwords using no special symbols, X then the number of passwords using at least one letter and at least one special symbol is $|X| |A \cup B| = |X| |A| |B| + |A \cap B| = 42^8 16^8 36^8 + 10^8 = 6,857,347,121,664$. (Think of the Venn diagram.)



- (c) P(42,8) = 4,758,977,059,200
- (d) $42 \cdot 41^7 = 8,179,679,503,002$. There are 42 choices for the first character, then 41 choices for each of the 7 remaining characters.
- 2. (a) 10! = 3,628,800. There are only 10! permutations of the vertex set.
 - (b) 25 is the maximum possible number of edges. Every bipartite graph is a subgraph of a complete bipartite graph $K_{10-m,m}$ for some $m \in \{1, 2, ..., 9\}$; and the number of edges in $K_{10-m,m}$ is $(10-m)m \leq 25$.
 - (c) Again, the maximum possible number of edges is 25, and the maximum is achieved only by the bipartite graph $K_{5,5}$, by Mantel's Theorem.
 - (d) The maximum number of edges is 15, achieved by the Petersen graph.
 - (e) There is only 1 such graph, shown in #5(c).
 - (f) Every such graph is a disjoint union of cycles of length at least 3. There are 5 such graphs, corresponding to the partitions of 10 into parts of size at least 3, namely (10), (7,3), (6,4), (5,5), (4,3,3). (For example, a disjoint union of a 4-cycle and two 3-cycles.)
 - (g) There are just 5 such graphs, namely the complements of the graphs in (f).
- 3. (a) This is the partition number p(12) = 77.
 - (b) The Bell number $B_{12} = 4,213,597$.
 - (c) The Stirling number of the second kind $\binom{12}{5} = 1,379,400$.
 - (d) $\binom{7+5-1}{5-1} = \binom{11}{4} = 330$. We first put one coin each envelope, then distribute the remaining 7 coins.
 - (e) The number of surjections from the set of 12 coins to the set of 5 letters {A,B,C, D,E} is $\binom{12}{5} \cdot 5! = 165,528,000$.

- 4. (a) $w_n = 0, 1, 5, 21$ for n = 0, 1, 2, 3 by direct counting. For example for n = 3, there are 4 paths along the vertices (1, 1, 1, 2), 6 paths along (1, 1, 2, 2), 9 paths along (1, 2, 2, 2), and 2 paths along (1, 2, 1, 2); so $w_3 = 4 + 6 + 9 + 2 = 21$.
 - (b) We are given that the sequence satisfies a linear recurrence $w_n = aw_{n-1} + bw_{n-2}$ for all $n \ge 2$. (But if you weren't given this information, you would know this from the fact that Γ has order 2.) The cases n = 2, 3 (together with the values in (a)) allow us to uniquely solve for a, b to obtain the relation $w_n = 5w_{n-1} - 4w_{n-2}$ for all $n \ge 2$; also $w_0 = 0$ and $w_1 = 1$. Alternatively, the recurrence relation follows from the denominator in (c).
 - (c) $[I xA]^{-1} = \begin{bmatrix} 1-2x & -x \\ -2x & 1-3x \end{bmatrix}^{-1} = \frac{1}{1-5x+4x^2} \begin{bmatrix} 1-3x & x \\ 2x & 1-2x \end{bmatrix}$. The (1,2)-entry gives the generating function $W(x) = W_{1,2}(x) = \frac{x}{1-5x+4x^2}$ for the sequence w_n .
 - (d) $\frac{x}{1-5x+4x^2} = \frac{A}{1-4x} + \frac{B}{1-x}$ so x = (1-x)A + (1-4x)B. Substituting $\frac{1}{4}$ and 1 gives $A = \frac{1}{3}$ and $B = -\frac{1}{3}$, so $W(x) = \frac{1/3}{1-4x} \frac{1/3}{1-x}$.
 - (e) From (d), $W(x) = \frac{1}{3} \sum_{n=0}^{\infty} 4^n x^n - \frac{1}{3} \sum_{n=0}^{\infty} x^n = \frac{1}{3} \sum_{n=0}^{\infty} (4^n - 1) x^n$ so $w_n = \frac{1}{3} (4^n - 1)$. (f) $w_n \sim \frac{1}{3} \cdot 4^n$ as $n \to \infty$.
- 5. (a) (Remember MISSISSIPPI?) $\binom{9}{4,3,1,1} = 2520$.
 - (b) $\frac{1}{2} \begin{pmatrix} 9\\4,3,1,1 \end{pmatrix} = 1260$. There are 2520 words made up of four A's, three B's, one C and one D. These words tell us how to partition 9 students into groups A, B, C, D of size 4, 3, 1 and 1 respectively. But since groups C and D both have the same size, and their order doesn't matter, we divide by 2 to get 1260.
 - (c) $2^5 \cdot 5! = 3840$. First flip any of the edges around in $2^5 = 32$ ways, then permute the five edges in 5! = 120 ways.
 - (d) $C_8 = \frac{1}{9} \binom{16}{8} = 1430.$
 - (e) Vertices 2,3,4 in 12 4 5 6 can be properly colored in 6 ways, then vertex 1 in 2 ways, then vertex 5 in 2 ways, then vertex 6 in 2 ways. Altogether there are $6 \cdot 2 \cdot 2 \cdot 2 = 48$ ways.
- 6. (a) \mathbf{T} (b) \mathbf{T} (c) \mathbf{T} (d) \mathbf{T} (e) \mathbf{F} (f) \mathbf{F} (g) \mathbf{T} (h) \mathbf{F} (i) \mathbf{T} (j) \mathbf{T}

Here are some remarks and partial explanations for answers in #6:

(a) As discussed in class, n! has superexponential growth. Choose an integer $N > \alpha$. We want to show that the ratio $c_n \to \infty$ where

$$c_n = \frac{n!}{\alpha^n} = \prod_{k=1}^n \frac{k}{\alpha} = c_{2N} \prod_{k=2N+1}^n \frac{k}{\alpha} > 2^{n-2N} c_{2N}$$

whenever n > 2N, since each of the factors $\frac{k}{\alpha} > 2$ in this range. This shows that $c_n \to \infty$ as $n \to \infty$, as required.

(b) As discussed in class, although the proof was not given. The ratio of the number of surjections $[2n] \rightarrow [n]$ to the number of injections $[n] \rightarrow [2n]$ is

$$\frac{\binom{2n}{n}n!}{P(2n,n)} = \frac{\binom{2n}{n}}{\binom{2n}{n}}$$

Here you should expect that this $\to \infty$ just by a quick comparison of Stirling's triangle with Pascal's triangle. But to finish the proof, let $c_n = {\binom{2n}{n}}/{\binom{2n}{n}}$ and consider the ratio $\frac{c_n}{c_{n-1}}$ as $n \to \infty$. First, ${\binom{2n}{n}}/{\binom{2n-2}{n-1}} = 2n(2n-1)/n^2 \leq 4$. Then using the recursive formula for Stirling numbers,

$$\begin{cases} \frac{2n}{n} \} = \{ \frac{2n-1}{n} \} + n \{ \frac{2n-1}{n-1} \} \ge (n-1) \{ \frac{2n-2}{n-1} \} + n \{ \frac{2n-2}{n-1} \} = (2n-1) \{ \frac{2n-2}{n-1} \}$$
so $\frac{c_n}{c_{n-1}} \ge \frac{2n-1}{4} \to \infty$ as $n \to \infty$.

- (c) This was discussed in class. (The proof, however, was not given as this uses delicate probabilistic arguments.)
- (d) As discussed in class, $A(x) = \frac{f(x)}{g(x)}$, where f(x) and g(x) are polynomials; and in fact, $g(x) = x^r c_1 x^{r-1} c_2 x^{r-2} \cdots c_{r-1} x c_r$.
- (e) As we have seen in examples, a_n typically grows exponentially.
- (f) The generating function for p(n) is the infinite product $\prod_{k=1}^{\infty} \frac{1}{1-x^k}$, not a rational function.
- (g) As covered in class.
- (h) If Γ has no 10-clique and no 10-coclique, then it has order n < R(10, 10), where R(10, 10) is a (finite) Ramsey number. There are only finitely many graphs of this size.
- (i) Take the column vector with all entries equal to 1.
- (j) This was covered in our discussion of the Spectral Theorem for real symmetric matrices.