

Combinatorics

Book 1

	#vertices	Connected graphs	All graphs
~	1	1	1
· · · · · · · · · · · · · · · · · · ·	2	1	2
\mathcal{L}	3	2	4
	4	6	11
e z e e 🥄 e e 🖓 e e e g 🏹 e e e e e e e e e e e e e e e e e e	5	21	34
	6	112	156
$F(1 \mid 1 \mid 6 - 1 \mid 6)$	7	853	1044
	8	11117	12346
	9	261080	274668
· · · · · · · · · · · · · · · · · · ·	10	11716571	12005168
	11	1006700565	1018997864
Ordinary/Simple Graph on n vertices/nodes	12	164059830476	165091172592
Ordinary / Simple Graph on n vertices modes	13	50335907869219	50502031367952
	14	29003487462848061	29054155657235488
Eq. List all "graphs on 4 vertices:	15	31397381142761241960	31426485969804308768
Eq. List all graphs on 4 vertices:	16	63969560113225176176277	64001015704527557894928
A grach of order n is a pair G = (V, E) where V is a set o subset of pairs & v, w & v, w & V. E.g. the and edges \$1,33, \$2,33 can be illustrated if is in the index of the illustrated if is in the	f n gra	_	L E is a fices 1,2,3,7 two grouply somerphic).

(symmetry) Aa automorphism of a graph is an isomorphism from the graph to itself.

An comorphism from graph (a) to graph (d) it the map with table of values vertex vertex in (n) in d) This is a very special graph having the special property that for every path of length 3 (vertices vo, vi, v2, v2 with vo~ v. ~ v2 ~ v3, v4v2, vo 4 v3, v, 4 v3) in (a) and every path wo~ w1 ~ w2 ~ v4 in (d) (w6+ w2, w0+ w3, v + w3) there is a unique isoneorphism (a) ->(b) mapping v; -> w; this is a <u>Petersen graph</u>. How many isomorphisms are there from (a) 40 (d)? (v 3 × 2 × 2 = 120.

In particular, a Petersen graph has 120 automorphisms.
The graph 12 (a 4-cycle) has & automorphisms Not an automorphism:
$0 \longrightarrow 1 \qquad 0 \longrightarrow 0 \qquad 0 \longrightarrow 0 \qquad (\longrightarrow 7)$
2 - 3 3 - 2 - 2 3 - 2 3 - 2 identify The edge 0~3 is mapped to a
identify The graph ~ { has exactly 2 automorphisms The graph ~ { has exactly 2 automorphisms
A graph with only one automorphism? (the graph of order 1, i.e. having only one vertex) A less trivial example with more than one vertex:
Every graph as a degree sequence. The degree of a vertex is the number of its neighbors. The graph ((above) has degree sequence (1,1,1,2,2,2,3). 14(+(+2+2+2+3=12)
If two graphs are isomorphic, they must have the same degree soquence. An isomorphism from I to I' must map each worten to a vertex of the same degree.
If two graphs have the same degree sequence, must they be isomorphic? No, e.g. the graphs (a), (c) on the previous page are not isomorphic, but both have degree sequence (3,7,3,9,3,3,9,3,3,9,3,3). A graph with a verticer and e edges has order a. The degree of vertex v, denoted deg(v), is the number of vertices joined to v. If G has vertices labelled 1,2,3,,n, then the degree sequence of G is (deg(i), deg(e),, deg(n)), permited into increasing order. A graph G is <u>d-regular</u> if deg (v) = d for every vertex v in G (or simply regular). Note: deg(i) + deg(e) + + deg(n) = ze.
A graph with a vertices and e ages now once in the agree sequence of G is (deg(i), deg(2),, deg(n)), vertices joined to v. If G has vertices labelled 1,2,3,,n, then the degree sequence of G is (deg(i), deg(2),, deg(n)), permitted into increasing order. A graph G is <u>d-regular</u> if deg (v) = d for every vertex v in G (or simply
$\operatorname{regular}). (\operatorname{Nou}, \operatorname{alg}(1) + \operatorname{alg}(2) + c + \operatorname{alg}(n) = 2e,$

Theorem IF G is a (finite) simple graph with e edges, then Z deg(v) = 2e where G = (V, E),
Theorem IF G is a (finite) simple graph with e edges, then $\sum deg(v) = 2e$ where $G = (V, E)$, V the set of vertices, E the set of edges. V the set of vertices, E the set of edges.
Proof We count in two different ways the number of pairs (V, (V, W)) in (VEV, (V, V)) = =).
Since every edge EV, with has two vertices v, w, there are 20 pairs.
Sunt w On the other hand since each vertex ve V has deg(v) edges, we have
$v \in v, w$ On the other hand, since each vertex $v \in V$ has deg(v) edges, we have $\sum deg(v)$ as the number of such pairs. These answers must agree. \Box
VeV fencing The second the tween a competitors Every competitor
consister with each of the sthess exactly once. A(together there are $\binom{N}{2} = \frac{n(n-1)}{2}$
To accord (") = " choose k" is the number of ways to choose a k-subset of an n-set
Imagine we organize a round robin tournament between a competitors. Every competitor competes with each of the others exactly once. Altogether there are $\binom{n}{2} = \frac{n(n-i)}{2}$. In general $\binom{n}{k} = $ "n choose k" is the number of ways to choose a k-subset of an n-set (i.e. a subset of size k in a set of n elements). $\binom{n}{k}$ is a binomial coefficient.
c con m con kank rie Dianiel Thomas)
(a+b) = = = (n/k) a b (the Binomial Theorem)
$(a+b)^{5} = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaba + aaaaba + aaaba + $
(u+b) = (1-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(
= (2)a'' + (2)a'' + (3)a'' + (3)a' + (3)a' + (3)a' + (3)a'' + (3)a''' + (3)a''' + (3)a''' + (3)a''' + (3)a'''' + (3)a''' + (3)a'''' + (3)a'''' + (3)a''' + (3)a''' + (3)a'''' + (3)a'''' + (3)a''' + (3)a''' + (3)a''' + (3)a'''' + (3)a''''' + (3)a''''' + (3)a''''''''''''''''''''''''''''''''''''
$= \binom{0}{a}\binom{a}{b} + \binom{1}{a}\binom{a}{b} + \binom{2}{2}\binom{a}{b} + \binom{4}{3}\binom{a}{b} + \binom{4}{5}\binom{a}{b} + \binom{5}{5}\binom{a}{b}$
$= \binom{3}{6}\binom{3}{6}\binom{6}{6} + \binom{7}{1}\binom{3}{6}\binom{6}{6} + \binom{3}{2}\binom{3}{6}\binom{6}{6} + \binom{5}{6}\binom{4}{6}\binom{6}{6} + \binom{5}{6}\binom{4}{6}\binom{6}{6} + \binom{5}{6}\binom{4}{6}\binom{6}{6} + \binom{5}{6}\binom{6}{6}{6}\binom{6}{$
(a+b) = (a+b)(a+b)(a+b)(a+b)(a+b)(a+b)(a+b) = (a+b)(a+b)(a+b)(a+b)(a+b)(a+b)(a+b)(a+b)
$= \binom{3}{6} a' b^{6} + \binom{3}{1} a' b + \binom{3}{2} a b + \binom{4}{3} a^{6} b + \binom{5}{5} a^{6} b^{7} = \frac{3}{16} a^{6} b^{7} + 5a^{6} b + \frac{1}{6} b^{7} $

Proof L	Let (d, da, da) 1	he the degree seque	nce of a graph	there exist two vertices there exist two vertices the two	grees 1,2,2,3,4
Proofs are la sentences.	zical arguments H	iet argue the -	truth of our asser	tion. They are always singular plural vertex vertices index indices natrix matrices	has legres square (0,1,1). Zo, 13 is the set of dagress of the vertices
<u>Pigeonhole</u> Pris in the same h function cohere cannot be onto	nciple Suppose obe. If n <h, at="" b<br="">2 (A (= n and (B)). (iii) Assoming</h,>	n pigeons come hast one of the hol = k, then: (i) n=k then f is one-t	to roost in k hole les will be empty. If n 7 k then f canon to one iff it is onto	s. If n>k, then the form other words, if ot be one to one; in	least) wo pigeons must be f: A -> B is any j if n < k then f

adually multiset Graph Reconstruction Problem Starting with a (simple) graph I of order n, we construct a set of n graphs I, Iz, ..., In where I: is formed by deleting vertex : (and all edges from vertex i). The set ZI, Iz, ..., In } is called the deck of I. $e_{q} \Gamma = \bigcap_{q} \Gamma_{q} = e_{q} \Gamma_{q} = e_{q$ Can you (uniquely) reconstruct [from its deck? (muttiset) Consider this set of seven graphs of order 6. Find a graph (of order 7 having this as its deck. Note: From the deck of any graph I, we can reconstruct (deduce) the degree sequence of I. Answer: Given two graphs of order n, how hard is it to check whether they are isomorphic? Assuming T, T' are given, each with n vertices, label the vertices of each graph 1,2,3,...,n. The number of bijections from the vertices of T to the vertices of T' is n! = 1x2x3x...xn (n factorial). (eg. 1!=1, 2!=2, 3!=6, 4!= 24, ..., 10!= \$628800, ...). Check each of the bijections to see if it is an isomorphism. This takes at most n! (2).

We have an algorithm for testing graph isomorphism but it requires (in the worst case) n! (")	• •
We have an algorithm for testing graph isomorphism but it requires (in the worst case) n! (") steps where n is the order of the graphs. n! -> 00 faster than any polynomial in n i.e. if f(n) is a polynomial in n (eg. (")= n(n-i)(n-2)(where k is constant ("") is a polynomial of degree k in n.)	akti
where ke is constant (i) is a polynomial of degree k in n.)	
i.e. $\lim_{n \to \infty} \frac{n!}{f(n)} = \infty$ for any positive polynomial function $f(n)$.	• •
In fact, n! -> 00 faster than any exponential function c" (c>1) eg.	
$\lim_{N \to \infty} \frac{n!}{10^n} = \lim_{N \to \infty} \left(\frac{1}{10} \cdot \frac{2}{10} \cdot \frac{3}{10} \cdots \frac{9}{10} \cdot \frac{10}{10} \cdot \frac{11}{10} \cdot \frac{12}{10} \cdot \frac{13}{10} \cdots \frac{n}{10} \right) = \infty$	• •
noo 10° nois (10 10 10 10 10 10 10 10 10 10 10) The best algorithms known for testing for graph isomorphism require for fewer than n! (2) steps (even in the worst case). These algorithms have running time that is intermediate between polynomial a exponential.	nd
In the worst case, it takes O(n2) steps to compute the degree sequence of a graph, a polynomial funct	fior
Assume graph P (the Peter sen graph) has 120 actimorphisms. ($P \cong graph(a)$) If Γ is any graph, then either $P \not\cong \Gamma$ or there are 120 isomorphisms $P \rightarrow \Gamma$.	• •
If $f: V(P) \rightarrow V(\Gamma)$ is a isomorphism then for every automorphism $\theta: V(P) \rightarrow V(P)$, we have an isomorphiced vertices vertices vertices of P of Γ	plis
vertices vertices of P of T $V(P) \xrightarrow{f} V(P) \xrightarrow{f} V(T)$	· ·
$\int \left(f \right)^{2} \left($	• •