Combinatorics

Book 2

The graph Tiv (formed by removing v and its alges from T) has one fewer vertex, so it can be properly colored using at most 6 colors. And since v has at most 5 neighbors in Tiv, there is a color left over which can be used to color vertex v. This gives a proper coloring of T using at most 6 colors (a contradiction)
We will improve this to show that actually 5 colors suffice to properly color every
We will improve this to show that actually 5 colors suffice to properly color every planar graph. If \$\$ \$7 Th
Given a graph I, the chromatic number of T, denoted $\chi(\Gamma)$, <u>Abc xXx</u>
is the smallest number of colors we can use to properly color the vertices for of Γ . A proper coloring of the vertices of Γ is a coloring of the vertices Greek "chi"
such that no edge has both endpoints of the same color.
The theorem of Appel and Haken (1976) is that every planar graph has $\chi(1) \leq 4$.
Note that $y(K_n) = n$. Here K_n is the complete graph of order n.
A graph [has $\chi(\Gamma) = 1$ iff it has vertices but no edges.
A graph Γ has $\chi(\Gamma) \leq 2$ iff Γ is bipartite iff Γ has no circuits of odd length.
Computing X(r) is hard in general.
Theorem IF Γ is a finite planar graph then $\chi(\Gamma) \leq 5$. Proof due to the wood.
· · · · · · · · · · · · · · · · · · ·

Proof If the theorem fails then there is a smallest counterexample Γ with n vertices (so Γ is planar and every planar graph of order n-1 has chrometic number ≤ 5 while $\gamma(\Gamma) \geq 6$. We seek a contradiction. Γ has a vertex v of degree ≤ 5 . In fact deg v = 5. (If deg $v \leq 4$ H) vertices in lee prothen $\gamma(\Gamma) \leq 5$, a contradiction.) Let Γ' be the graph obtained χ'_{1} from Γ by deliting v and its five edges, χ'_{2} so $\chi(\Gamma') \leq 5$. Say v: has color i (i=1,2,...,5). Colors 1,3 only. This graph is bipartite. I can assume v_r is joined to v_s in $\Gamma_{13} = \Gamma(v_{rs})$ in part of Γ_{12} rangers colors 1.3 only this graph is bipartite. I can assume v_r is joined to v_s in Γ_{13} (otherwise closed using 12 $\Gamma_{12} = \Gamma(V_{12})$ in part of Γ_{13} , noverse colors 1,3 so that V_3 gets color '. Then we are free to color V using color 3 V_1 , V_2 , Γ_{12} , Γ_{13} , $\Gamma_{14,5}$, $\Gamma_{14,5}$, $\Gamma_{14,5}$, Γ_{15} Similarly there is a path from v_ to v_ using only vertices of elors v_ 2 and 4. Contradiction!

Given a graph I, e subgraph of I is formed by taking a subset of the edges of I together with all their vertices. An induced subgraph of I is formed by takin a subset of the vertices of I together with all their edges in I	•
$\Gamma = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} + eg. \begin{pmatrix} 2 \\ 1 \\ 6 \\ 5 \end{pmatrix}$ is a subgraph of Γ . (not an induced subgraph of Γ)	ph
eg. 'I is an induced subgraph of Γ .	
An induced subgraph of I is a subgraph of I, but not conversely.	
An induced subgraph of Γ is a subgraph of Γ , but not conversely. A <u>k-clique</u> in Γ is a complete subgraph of Γ , i.e. a subset of the vertices, any two of which are joined. In Γ above, $\xi_{1,2,6}$ is a clique (in fact a 3-clique). The clique number of denoted $w(\Gamma)$, is the size of the largest clique in Γ . It is hard to compute W vs. w , $w(\Gamma)$.	Γ,
denoted w(T), is the size of the largest clique in T. It is hard to compute	
W vs. ω $\omega(\Gamma)$. Roman Greek Theorem For every graph Γ , $\chi(\Gamma) \ge \omega(K)$. $\frac{2}{2} = \frac{2}{3} \chi(P) = 3$	3
W vs. ω $\omega(T)$. Roman Greek Theorem For every graph Γ , $\chi(T) \ge \omega(K)$. Warning: this not equality! For the Petersen graph P, $\omega(P)=2$. Proof: The vertices in a clique of size $\omega(T)$ require $\omega(T)$ different colors. P.	egh

Dual to the clique number w(r) we have the coclique number a(r) which is the maximum
number of vertices in F, no two of which are joined. (This is $\alpha(\Gamma) = \omega(\Gamma)$ where
Dual to the clique number $w(\Gamma)$ we have the coclique number $\alpha(\Gamma)$ which is the maximum number of vertices in Γ , no two of which are joined. (This is $\alpha(\Gamma) = w(\Gamma)$ where \overline{r} is the complementary graph). Cocliques are also called independent sets of vertices
Eq. $\alpha(P) = 4$. $ \chi(P) \ge \frac{10}{4} = 2.5 \implies \chi(P) \ge 3.$
2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 8 A maximum coclique (i.e. a coclique of maximum size) is \$1,3,7,83
This is maximum size because P has vertex set 20,39,6,13 U \$2,9,5,
as a union of two 5-cycles (circuits of length 5). Any set of \$183
at least 5 vertices has either 3 on the inner 5-cycle \$2,7,5,48 or 8 and m
the outer Scycle \$0,3,9,6,13. In either case there is an edge in that 5-cycle
as a union of two 5-cycles (circuits of length 5). Any set of size 4,83 at least 5 vertices has either 3 on the inner 5-cycle \$2,7,5,4,83 or 8 vertices on the outer Scycle \$0,3,9,6,13. In either case there is an edge in that 5-cycle joining two vertices we have chosen.
Theorem $\chi(\Gamma) \ge \frac{ V }{\alpha(\Gamma)}$ where $ V = the number of vertices = the order of \Gamma.$
Proof Let k= g(r). Properly color the vertices 1,2,, k and let V: be the subset
of vertices colored i, for i=1,2,, k. This gives a partition V = V, 11 V2 LI LI Vk
V. V. = union of V. and V.: V. LIV. = disjoint union of Vi and Vi). Each Vi is a
$V_{\cdot} \vee V_{\cdot} = \text{union of } V_{\cdot} \text{ and } V_{\cdot j} V_{\cdot} \sqcup V_{\cdot} = \text{disjoint union of } V_{\cdot} \text{ and } V_{\cdot} \text{). Each } V_{\cdot} \text{ is a } \mathcal{O}_{\cdot} \text{ coclique so } (V_{\cdot} \leq \alpha(\Gamma) \text{ so } V = V_{\cdot} + V_{k} + \dots + V_{k} \leq \alpha(\Gamma) + \alpha(\Gamma) + \dots + \alpha(\Gamma) = k \alpha(\Gamma) \text{ so } V = k \neq \frac{ V }{\alpha(\Gamma)}.$
$\lambda = \lambda =$

March Test 1: Wed Mar 8 8 10 Break 13 15 You can use nairty to test isomorphism between two graphs. Using nauty Software G= Aut F $G = \left((1,3)(4,5)(6,7)(8,9) \right) (0,2)(1,4)(3,5)(6,9)(7,8) \right)$ (61 = 4 G has 3 orbits on the vertices: 80,23, 81,3,4,53, 86,7,8,93

The Petersen graph P has a Hamilton path (9,123,6,8,579) (a path touching each vertex exactly once) but no Hamilton circuit (ending at the same vertex where it started). The Hamming cale H3 = 001 (11) = does have a Hamilton 000 100 100 circuit 000 Gray code " A graph having a Hamilton circuit Every Harring graph Hu (n72) has a Hamilton circuit. 001 is called Hamiltonian. Looking for Hamilton paths or circuits known to be difficult in general. Testing whether a giving graph F is Hamiltonian is NP-complete.

Theorem: The Petersen graph P is not Hamiltonian, i.e. it does not have a Hamilton circuit/cycle. 3 Proof Suppose P has a Hamilton circuit. Without (4,0,1,2) (This is because P has 120 automorphing 5 6 7 2 napping any such path of length 3 to any other.) The Hamilton circuit uses two of the edges from vertex 3, so it uses either {3,43 or {2,3}; so without We cannot use the edge {3,4} as this would complete the circuit without passing through all vertices; so we must me the edges {3,6} and {4,5}. To continue the circuit from vertex 6, we have two choices: proceed through and \$4,5?. proceed through vertex 8 or retex 9. Neither of these This is a contradiction. Choices leads to a Hamilton circuit Euler paths and circuits

The Seven bridges of Königsberg e _ e D A and the part of the and the second second An Enler trail is a trail (repeating vertices but not edges) which uses each edge exactly once. An Enler circuit is an Enler frail that returns to its starting point. In order to have an Enler trail. In order to have an Enler trail, a graph must have either 0 or 2 vertices of sold degree. When there are no vertices of sold degree, we have an Enler circuit. Theorem (Enler) A graph has an Euler freil iff it is connected and it has either 0 or 2 vertices of odd degree. In the case every vertex has even degree, we have an Enler circuit/cycle.

We sometimes speak of labelled graphs and unlabelled graphs. Eq. on the vertex set $\{1,2,3,4\}$, there are $2^6 = 64$ labelled graphs $(\frac{4}{2}) = 6$ pairs of vertices. 2. .3 There are (2) labelled graphs on a vertices. But many of them are isoanorphic. 2. 13 # 2. 3 These are different (abelled graphs but they are isomorphic. N = X As unlabelled graphes they are isomorphic, hence the same graph. L'UNKKNHZM There are 11 unlabelled graphs of order 4 i.e. 11 isomorphism types of graphs of order 4, i.e. 11 graphs of order 4 up to isomorphism.

The Petersen graph has girth 5 (the shortest cycle has length 5). It has 15 edges. for a graph on 10 vertices, 15 edges is the maximum possible for girth 5. for a graph on 10 vertices without triangles (i.e. girth >=4), what is the maximum possible number of edges? Km, is bipartite so it has no cycles of odd length. In particular it has no triangles. Kmin has no edges Recall: Kun, n = Kz,8 has 16 edges Theorem (Mantel 1907) If Γ is a graph of order α with no triangles (i.e. its girth is at least 4) then Γ has at most $\frac{n^2}{4}$ edges. K2,8 K5,5 16 edges 25 edges girth 4 If a is even then $K_{\frac{n}{2},\frac{n}{2}}$ attains the upper bound of $\frac{n^2}{4}$ edges. What if $n \ge odd$? (no triangles) Ou q vertices, any graph without triangles has at most 20 elgs. $\begin{bmatrix} n^{2} \\ -\overline{4} \end{bmatrix} = \begin{cases} \frac{n^{2}}{4} & \text{if } n \text{ is even, for } K_{\frac{n}{2}, \frac{n}{2}} \\ \frac{n^{2}-1}{4} & \text{if } n \text{ is odd, for } K_{\frac{n+1}{2}, \frac{n-1}{2}} \end{cases}$ Kais

with no triangles, $\Gamma = (V, E)$. $(V \text{ is the set} for every edge <math>\{x, y\} \in E$, $d(x) + d(y) \leq n$. Proof Let [be a graph of order n of vertices, E is the set of edges. d(x)-1 x x d(y)-1 $d(x) - x + x + x + d(y) - x \le n$ Add the inequality $d(x)+d(y) \le n^2$ over all edges $\{x,y\}\in E$ to get $\sum (d(x)+d(y)) \le ne$ Next, count the number of triples of vertices (x,y,z) with x = y = z. There are a choices for $y \in V$ and d(y) choices for x, d(y) choices for z, $y \in V$ and d(y) choices for x and z (given y). The total number of walks of length 2 is z $d(y)^2$. On the other hand, there are e = |E| edges in Γ . For the edge $\{r, y\} \in E$, how-many walks of length 2 contain this edge ? d(r) + d(y) choices of walk of length 2 in which we include The total muniter of walks of length 2 is a step from I to y х. А. d(x) choices for z (given the edge {x,y}) $\sum (d(x) + d(y))$. d(y) choices for z (given the edge {xy}) {xy}€E

Therefore $\sum_{x \in V} d(x)^{2} = \sum_{x,y} (d(x) + d(y)) \leq en$ $\sum_{x \in V} \sum_{x,y} d(x) = 2e, \text{ what does this tell us about } \sum_{x \in V} d(x)^{2} ?$ $N \leq e \text{ the Cauchy-Schwarz inequality.}$ $(d(i) + \dots + d(n))^{2} \leq n(d(i)^{2} + \dots + d(n)^{2})$	Cauchy-Schwarz Ivequality Given two vectors $a = (a_{c_1}a_{c_2},, a_n) \in \mathbb{R}^n$ $b = (b_{c_1}, b_{c_2},, b_n) \in \mathbb{R}^n$, $[a \cdot b] \leq a \cdot b $ where $a \cdot b = a_1b_1 + a_2b_2 + + a_nb_n$ $ a = \sqrt{a_1^2 + a_2^2} + + a_n^2$ $a \cdot b = a 1 = 0$
$4e^2 \le n \ge d(x)^2 = n \ge (d(x) + d(y)) \le n \cdot ne = ne$ $x \in V$ $\{x, y\} \in E$	$a \cdot b = \ a\ \ b\ \cos \theta$ $a \int_{\theta}^{1} \cos \theta \leq 1.$
$S_0 e \leq \frac{\Lambda^2}{4}$.	
· · · · · · · · · · · · · · · · · · ·	Special case: $b = (1, 1, 1,, 1)$ $ b = \sqrt{l^2 + l^2 + + l^2} = \sqrt{n}$
	$ (b) = \sqrt{l^2 + l^2 + \dots + l^2} = \sqrt{n}$
	. h
	$q \cdot b = q_1 + q_2 + \dots + q_n$
	$ a.b \leq a \sqrt{n}$
	$\left(q_{1}^{+}+q_{n}^{2}\right)^{2} \leq n\left(q_{1}^{2}+\cdots+q_{n}^{2}\right)$
	(ir in)

Proof of Cauchy- Schwarz:	Fix e,b < R", Consider	· · · · · · · · · ·	
$f(t) = a-tb ^2 = (a-tb)$). $(a-tb) = a \cdot a - tb \cdot a - t$	a.b + t b.h =	[a][2- 2t(a.b)+t]16/
of course fit) > 0 for		er	NOT
The discriminant	disc <0	disc =0	dise >0
$(-2a-b)^2 - 4 a ^2 b ^2 =$	≤o		
$q(a,b)^2 \leq q a ^2 b $			The disc. of at+bt+c is h= fac
$(a \cdot b)^2 \leq a ^2 1 $			

Show me a graph Γ of order 5 such that neither Γ nor $\overline{\Gamma}$ has a triangle. (i.e. both Γ and $\overline{\Gamma}$ have girth $\equiv 4$). Recall: $\overline{\Gamma}$ is the complement of Γ . $\Gamma = \prod_{i=1}^{n} \overline{\Gamma} = \prod_{i=1}$ Show me a graph l'of order 6 such that wither l'nor F have a triangle. There is no such graph. Why not? Color the edges of K5 with 2 colors red, blue. To avoid a monochromatic friangle (all red or all blue): Theorem If we color the edges of K₆ red and blue, then there is either a red triangle or a blue triangle. Proof Consider a vertex v. v y edges from v so by the × Ke: Pigeon hole Now xiyiz form a friangle. Principle, at If any edge of this triangle is blue then together with the edges to r we have a blue triangle. Otherwise all edges least three of them are the same color, say Ev.x?, Ev.y?, Sv.z? are blue. of the triangle (r, y, 2? are red, []

Theorem Net ris be positive integers. There is a number R(r,s) such that For all $n \ge R(r,s)$ every 2-coloring of the edges of K_n has either a red r-clique or a blue s-clique. For n < R(r,s), there exists a coloring of the edges of K_n with 2 colors (red, blue) having no red r-clique and no blue s-clique.

	0 0 0	Valu	ies / knowr	n bounding	ranges for	Ramsey n	umbers R (r,	, s) (sequenc	e A212954 ir	the OEIS)	
R(3,3)=6. R(2,3)=3	r r	1	2	3	4	5	6	7	8	9	10
R(2,3) = 3	1	1	1	1	1	1	1	1	1	1	1
	2		2	3	4	5	6	7	8	9	10
	3			6	9	14	18	23	28	36	40-42
e de <mark>Andre</mark> de de la	4				18	25 ^[9]	36–40	49–58	59 ^[13] _79	73–106	92–136
< R(5,5) < 1 8	5					43–48	58–85	80–133	101–194	133–282	149 ^[13]
	6						102–161	115 ^[13] – 273	134 ^[13] – 427	183–656	204–949
R(r,s) values	7							205–497	219-840	252-1379	292–2134
we Ramsey	8								282-1532	329–2683	343-4432
mulers	9									565-6588	581-12677
Extremel graph -fleory)	10										798-23556
-theory)	• • •										

4 is a subgraph of r 2 is not a 54 Subgraph. i is an induced subgraph. Graph Theory - Linear Algebra Matroid Theory The adjacency motion of a graph I with vertices 1,2,3,..., n is the non matrix whose (i,j)-entry is the number of edges from vertex i to vertex j. Eq. F= has adjacency motrix $2 \begin{bmatrix} 0 & i & 0 & \overline{0} \\ i & 0 & i & \overline{0} \\ 0 & i & 0 & \overline{0} \end{bmatrix} = A$ Symmetric (0, i) - motrix with zero hisgoral (corresponding to an undirected (corresponding to an undirected graph with no boops or multiple edges) directed greph with loops and a multiple edges 2 0 1 2 1 2 1 0 1 0 3 0 1 2 1 4 0 0 0 0

The mlabelled graph has several choices of adjacency matrix. $f = \frac{2}{3}$ has adjacency matrix $\frac{2}{3} \begin{bmatrix} 0 & i & 0 \\ 1 & 0 & i \\ 0 & 1 & 0 \end{bmatrix} = A$ $A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 3 & 1 & 1 \\ 3 & 1 & 1 & 2 & 1 \\ 3 & 1 & 1 & 2 & 1 \\ 4 & 1 & 1 & 1 & 2 \end{bmatrix}$ The (i, j) entry of A² is the number of walks of length 2 from vertex i to vertex j. (A walk is allowed to repeat edges or vertices, milike in a path or a trail.) $A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 3 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 8 & 1 & 1 \\ 3 & 2 & 4 & 4 \\ 1 & 4 & 2 & 3 \\ 1 & 4 & 8 & 2 \end{bmatrix}$ The (i, j) entry of A is the number of walks of length in from vertex: to vertex j in T. A has adjacency matrix [0010] 22 0010] $A^{o} = I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ If Γ is a k-regular graph then $A_j = k_j$, $A_j = k_j$. i.e. j is an eigenvector of A with eigenvalue k. $A_j = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} degree sequence$ AJ= 3333 2222 2222

Which graphs are regular with diameter 2 and gith 5? 5-cycle	Any such graph as order 5, 10, 50 or
	3250.
Peterse graph	. .
	er of walks of length k
Look at Kz = 2 vrith adjacency matrix A= 2 [10]. The much	i to vertex j is the of A ^k .
How many walks of length to are there from vertex 2 to vertex 3 in Kz	<u>, , , , , , , , , , , , , , , , , , , </u>
$A = \begin{bmatrix} 342 & 34i & 34i \\ 34i & 342 & 34i \\ 34i & 34i & 342 \end{bmatrix}$ Since A is a real symmetric matrix, it is diagonalizable i.e. there consisting of eigenvectors of A. One obvious eigenvector $u_i = j = \begin{bmatrix} i \\ i \end{bmatrix}$ Since K ₃ is 2-regular. Another eigenvector $u_2 = \begin{bmatrix} -i \\ 0 \end{bmatrix} : Au_2 = \begin{bmatrix} 0 & i & 1 \\ i & 0 \end{bmatrix} \begin{bmatrix} i \\ -i \end{bmatrix} = \begin{bmatrix} -i \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -i \\ 2 \end{bmatrix} = \begin{bmatrix} -i \\ 2 \end{bmatrix} = -u_3$	· · · · · · · · · · · · · · · ·
$U_{3} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} + A_{-3} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix} = -U_{3}$	

J	It is customany to normalize the eigenvectors as	
• •	$\underline{\mathcal{U}}_{1} = \overline{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \qquad \underline{\mathcal{U}}_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \qquad \underline{\mathcal{U}}_{3} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$	
	so that { u, uz, u, } is an orthonormal basis of IR3 consisting of eigenvector	s of A.
6	Orthonormal means u: u; Si H =]	· · · · · · · · ·
••••	$A_{\mathcal{U}_{i}} = \lambda_{i} \mathcal{U}_{i} \qquad \lambda_{i} = 2, \lambda_{i} = \lambda_{i} = -1 \qquad $	1] has eigender (') but re
 	has diagonal form $D = \begin{bmatrix} 2 & 0 \\ 0 & -1 & 0 \end{bmatrix}$ $D' = \begin{bmatrix} 1024 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	Lo J our ha
· · ·		2] has a basis of eigenvectors
•••	A - UDU 12. UTU D	0] (with eigenvilue
 		[-1] (with eigentaline 2)
A A	$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \xrightarrow{diagonalize} D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \xrightarrow{diagonalize} D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \xrightarrow{diagonalize} D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \xrightarrow{diagonalize} D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	perpendicular/ orthogonal.
•••	$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \xrightarrow{\text{diagonalize}} D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \xrightarrow{\text{Check}: dot A = 2 \\ dot D = 2 \\ tr D = 0 \\ dot D = 0$	
• •	The list of eigenvalues 2,-1,-1 is the spectrum of A (or of D) characteristic po det (xI-A) = det(xI-	So they bare
•••	det (xI-A) = det (xI-	D = (x-z)(x+y)

A Moore graph is a k-regular graph of diameter 2 and	1 girth 5. What are the examples?
k72 (regular græghs are not commetted unless n=2.	
	Between V: and V; (it) the edges form a <u>petert</u> motching
$n = k + 1 + k(k - \pi) = k + 1$	
$N = \frac{k_{+1} + k(k_{\pi}) = k_{+1}}{V_{1}}$ $V_{1} = \frac{1}{V_{2}}$ $V_{2} = \frac{1}{V_{3}}$ $V_{4} = \frac{1}{V_{1}}$	
	V
V_1 V_2 V_3 V_k $ V_i = k - 1$	$\left(\left(k-1\right)^{\frac{k(k-1)}{2}}\right)^{\frac{k(k-1)}{2}}$ ways to change
V = k - 1	here perfect matchings.
Now let A be the adjacency matrix of the Moore graph of degree k, n=k+1. A is n×n, J=J_= ['] n×n	If you can do this without creating any 3-cycles or fights
of degree k , $n = k+1$. A is $n \times n$, $\int \int \int$	then you have a Moore graph.
$J = \begin{bmatrix} i \\ i \\ j \end{bmatrix}_{n \neq n} \qquad j = \begin{bmatrix} i \\ i \end{bmatrix}_{n \neq i} \qquad Aj = kj \qquad AJ = kJ \\ JA = kJ \qquad JA = kJ$	$A^{T} = A$
A, J, I all commute with each other.	$(AJ)^{T} = (kJ)^{T}$ $JA = J^{T}A^{T} = kJ$
J-I-A is the adjacency matrix of the complementary graph.	· · · · · · · · · · · · · · · · · · ·

$A^2 = kI + (J - I - A)$
Why? The (i,j) entry of A^2 is the number of walks of length 2 from vertex i to vertex j. (are $i=j$: A^2 has k in the diagonal entry (i,i) .
Case i=j: A ² has k in the diagonal entry (i,i).
Case inj i - j. Here the (i,j). entry of A ² is O. Same on the right hand side.
Case it j ; , j Here the (ij)-entry on both sides is 1.
Since A is a real symmetric nxn matrix, it has n eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ with corresponding eigenvectors μ_1, \dots, μ_n i.e. $A\mu_i = \lambda_i \mu_i$. Some of the eigenvalues will be repeated. One of the eigenvalues is k since $Aj = kj$, with eigenvector $j = [i]$ or $\frac{1}{\sqrt{n}} [i]$. What are the other eigenvalues and eigenvectors?
with corresponding eigenvectors $\underline{u}_1, \ldots, \underline{u}_n$ i.e. $A\underline{u}_i = \lambda_i \underline{u}_i$. Some of the eigenvalues
will be repeated. One of the eigenvalues is k since Aj = kj, with eigenvector j= [:]
or the fill when one one eigenvectors!
Say <u>u</u> is an eigenvector different from vil; , with corresponding eigenvalue & so Au= Au
So \underline{u} is perpendication to $\begin{bmatrix} 1\\ 1 \end{bmatrix}$ i.e. $J\underline{u} = \underline{O} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$. (orthogonal) $A\underline{u} = AA\underline{u} = AA\underline{u} = AA\underline{u} = AA\underline{u}$
$A_{\underline{u}}^{2} = AA_{\underline{u}} = AA_{\underline{u}} = \lambda A_{\underline{u}} = \lambda A_{\underline{u}} = \lambda A_{\underline{u}}$
$A^{2} \underline{u} = \begin{bmatrix} k \mathbf{I} + (J - \mathbf{I} - \mathbf{A}) \end{bmatrix} \underline{u} \qquad \lambda^{2} = k - 1 - \lambda$ $A^{2} \underline{u} = \begin{bmatrix} k \mathbf{I} + (J - \mathbf{I} - \mathbf{A}) \end{bmatrix} \underline{u} \qquad \lambda^{2} = k - 1 - \lambda^{2} < k \qquad So \lambda, = k and \lambda_{e_{1}} \cdots, \lambda_{n} are less$ $\lambda^{2} \underline{u} = k \underline{u} - \mu - \lambda \underline{u} \qquad \lambda = k - 1 - \lambda^{2} < k \qquad So \lambda, = k and \lambda_{e_{1}} \cdots, \lambda_{n} are less$ $H \underline{u} = k \underline{u} - \mu - \lambda \underline{u} \qquad \lambda = k - 1 - \lambda^{2} < k \qquad So \lambda, = k and \lambda_{e_{1}} \cdots, \lambda_{n} are less$
$\lambda \mu = K \mu - \lambda \mu$ than be.

Since we have n-1 remaining eigenvalues $\lambda_2,, \lambda_n$ all of which are roots of $\lambda^2 + \lambda - (k-i) = 0$, some of the eigenvalues must be repeated. They are
λ²+λ-(k-i)=0, some of the eigenvalues must be repeated. They are
$\frac{1}{2}(-1\pm\sqrt{1+4(k-i)}) = \frac{1}{2}(-1\pm\sqrt{4k-3})$
$\lambda = \frac{1}{2} \left(-1 + \sqrt{4k-3} \right)$
$\mu = \frac{1}{2} \left(-1 - \sqrt{4k-3} \right)$
So the spectrum of A is k, h, h,, h, M,, h. Since + A = 0,
· · · · · · · · · · · · · · · · · · ·
$k+m\lambda+(n-1-m)\mu=0.$
This allows us to solve for m.
$2k + m(-1+\sqrt{4k-3}) + (n-1-m)\cdot(-1-\sqrt{4k-3}) = 0$
$2k + -(n-1) + (2m-n+1)\sqrt{4k-3} = 0$ $k^2 \qquad 2m-k^2$
k^2 $2m-k^2$
$(2m-k^2)\sqrt{4k-3} = k(k-2)$ (*)
if k=2 we get h= i(1+J5) u= i(-1-J5) and the spectrum is 2, 1, 1, u, u
Otherwise $k>2$ so $4k-3$ must be an integer square i.e. $m=2$ $4k-3 = d^2$ where d is an integer, $d>0$. $k=\frac{d^2+3}{4}$. Substitute into (k) to get $(d^4+d^3+6d^2-2d+9-32m)d = 15$. $\Rightarrow d=1,3,5$ or 15 . $\Rightarrow k=1,3,7$ or 57 .
$(d^{4}+d^{3}+6d^{2}-2d+9-32m)d = 15.$ $\implies d = 1,3,5 \text{ or } 15.$ $\implies k=1,3,7 \text{ or } 57.$

Counting welks in graphs How many ways can we walk from land mass i to land mass j by crossing m bridges? 12 This number win(i,j), equels the number of walks where the adjacency matrix of T of length in T. It is also the (i,j) entry of A= 102 Rather than working out A" in each case, we want a formula for We are able to give a closed formula for $W_{ij}(x) = \sum_{i=1}^{2} w_{ij}(ij)x^{*} = w_{0}(ij) + w_{0}(ij)x + w_{2}(ij)x^{2} + w_{3}(ij)x^{3} + \cdots$ which is the generating function for the sequence wo(i,j), w,(i,j), w_(i,j), .