Combinatorics

Book 2

Proof If the theorem fails then there is a smallest counterexample Γ with n vertices (so Γ is planar and every planar graph of order $n-r$ has chromatic
number ≤ 5 while $\gamma(r) \geq 6$). We seek a contradiction. I has a vertex number ≤ 5 while $\gamma(\Gamma) \geq 6$). We seek a convention ten
≤ 4 then $\gamma(\Gamma) \leq 5$, a contradiction.) Let Γ' be the graph obtained y_s \leq 5 a contradiction.) Let Γ' be the graph obtained
 y_s \leq 5 from Γ by deliting v and its five edges, y_s \leq 5 so $\gamma(\Gamma') \leq$ 5. Say v_s has color i (i=1,2,..,5), com be proportional varing
 y_s $\$ $= 5.$ Say v_i has color i ($i = 1, 2, \cdots, 5$). can be properly $\leq 5.$ Consider the vertices $V_{13} \subset$ {vertices of Γ } having at most five colors 1,3 only. This graph is bipartite. I can assume v, is joined to v_s in r_s (otherwise $\frac{1}{2}$ and $\frac{1}{2}$ reverse colors 1,3 so that $\frac{1}{3}$ gets then $\chi(f) \leq 5$ is determined to contribute the color is $\chi(f)$ and $\chi(f)$ and $\chi(f)$ and $\chi(f)$ from $\chi(f)$ is $\chi(f)$ from $\chi(f)$ and $\chi(f)$ is $\chi(f)$ and $\chi(f)$ is $\chi(f)$ and $\chi(f)$ is $\chi(f)$ and $\chi(f)$ is $\chi(f)$ and since its neighbors are color $1,2,1,4,5$). Otherwise r_3 has a path from v, to vs. $\frac{v_1}{v_2}$, $\frac{v_2}{v_3}$ Similarly there is a path from $\frac{v_1}{v_2}$ $\frac{v_2}{v_3}$ $\frac{v_3}{v_4}$ $\frac{v_4}{v_5}$ $\frac{v_5}{v_6}$ $\frac{v_6}{v_7}$ $\frac{v_7}{v_8}$ $\frac{v_8}{v_9}$ $\frac{v_1}{v_9}$ $\frac{v_1}{v_9}$ $\frac{v_2}{v_9}$ $\frac{v_1$ k noing 4. s a path from
ponly vertices Contradiction of !
' f olos $\ddot{\mathbf{\Omega}}$ If dg $v \le 4$
graph obtained $v \le 4$
graph obtained $v \le 4$
its five edges,
les color i (i=1,2,..,5), obt
sperices of Γ } haring at
me v_1 is joined to v_5 in Γ_5
sperice colors 1,3 so that v_5
is we are free 3

Given a graph Γ , a subgraph of Γ graph I, a subgraph of I is formed by taking a subset of the edges
ogether with all their vertices. An induced subgraph of I is formed by taking
the vertices of I together with all their edges in I of i together with all their vertices. Given a graph I, e subgr
of I together with all their
a subset of the vertices of I Fiven a graph Γ , a subgraph of Γ is formed by taking a subset of
of Γ together with all their vertices. An induced subgraph of Γ is for
subset of the vertices of Γ together with all their edges in Γ
 Γ is a subgraph of Γ . (not an indered subgraph $T = \frac{1}{2}$ subset of the vertices of Γ together with all their edges in Γ
 Γ = $\begin{pmatrix} 3 & 4 & 4 \ 0 & 5 & 5 \end{pmatrix}$ is a subgraph of Γ . (A
An induced subgraph of Γ is a subgraph of Γ , but not conversely. A k-clique in [is a complete subgraph of [, i.e. a subset of the vertices, any two of which are joined.
In [above, {1,2,6} is a clique (in fact a 3-clique). The clique number of [, In I wood, C_1 , of is a signe (m acc a singue). W vs. ω $w(T)$.
Roman Greek Theorem For every graph T , $\chi(T) \geq w(K)$. the vertice of $X(P) = 3$ Warning: this not equality! For the Petersen graph P, w(P)= 2. Particle Petersengraph
Roof: The vertices in a clique of size with require with different colors.

March M $\frac{1}{s}$ $\frac{1}{s}$ $\frac{1}{s}$ $\frac{1}{s}$ Test 1: Wed Mar 8 You can use nauty to test isomorphism between
two graphs.
(c) **Break** Using nauty Sort $G = Aut$ $G =$ $\langle\langle(1,3)(4,5)(6,7)(8,9), (0,2)(1,4)(3,5)(6,9)(7,8)\rangle$ $5 = 21$
 $|61 = 4$ G has 3 orbits on the vertices: $923, 91, 3, 4, 53, 96, 7, 8, 9, 8$

The Petersen graph P has a Hamilton path
(0,1236,8579) (a path touching
vertex exactly once) but no Hamilton circu
exactly once) but no Hamilton circu $\left(\begin{array}{cc} 0, 1, 2, 3, 6, 8, 5, 7, 9 \end{array}\right)$ (a path touching each I vertex exactly once) but no Hamilton circuit 4 Cending at the same vertex where it started). 5 8 8 -The Haming cale $H_3 = \frac{80}{100} \int_{100}^{101} z f(x) dx$
does have a Hamilton 000 100
circuit. 000
circuit. 011 Gray code" 32 drawn 000 108 110 d 0 10 A graph having a Hamilton circuit 011 Gray 10 ^I 001 is called Hamiltonian. Every Hanning graph H_n $(n\geqslant2)$ has a Looking for flamilton paths or circuits is Hamilton circuit.
Known to be difficult in general own to be difficult in general.
Testing whether a giving graph Γ is thaniltonian is NP-complete.