Combinatorics Book 2

The graph Tiv (formed by removing v and its edges from T) has one fewer vertex, so it can be properly colored using at most 6 colors. And since v has at most 5 neighbors in Tiv, there is a color left over which can be used to color vertex v. This gives a proper coloring of T using at most 6 colors (a contradiction)
We will improve this to show that actually 5 colors suffice to properly color every
planar greiph. 2/ \$ \$ \$ \$ \$ \$ \$
Given a graph I, the chromatic number of I, denoted y(I), Abc xXx
is the smallest number of colors we can use to properly color the vertices
of [. A proper coloring of the vertices of [is a coloring of the vertices breek cu
such that no edge has both endpoints of the same color. The floor of has $V(F) \leq 4$
Note that $Y(K_n) = n$. Here, K_n is the condite graph of order n.
A graph [has $\chi(\Gamma) = 1$ iff it has vertices but no edges.
A graph Γ has $\chi(\Gamma) \leq 2$ iff Γ is bipartite iff Γ has no circuits of odd length.
Computing J(r) is hard in general.
Theorem IF Γ is a finite planar graph then $\chi(\Gamma) \leq 5$. Proof due to the awood.

Proof If the theorem fails then there is a smallest counterexample Γ with n vertices (so Γ is planar and every planar graph of order n-1 has chrometic number ≤ 5 while $\gamma(\Gamma) \geq 6$. We seek a contradiction. Γ has a vertex v of degree ≤ 5 . In fact deg v = 5. (If deg $v \leq 4$ H) vertices in lee prothen $\gamma(\Gamma) \leq 5$, a contradiction.) Let Γ' be the graph obtained χ'_{1} from Γ by deliting v and its five edges, χ'_{2} so $\chi(\Gamma') \leq 5$. Say v: has color i (i=1,2,...,5). Colors 1,3 only. This graph is bipartite. I can assume v_r is joined to v_s in $\Gamma_{13} = \Gamma(v_{rs})$ in part of Γ_{12} rangers colors 1.3 only this graph is bipartite. I can assume v_r is joined to v_s in Γ_{13} (otherwise closed using 12 $\Gamma_{12} = \Gamma(V_{12})$ in part of Γ_{13} , noverse colors 1,3 so that V_3 gets color '. Then we are free to color V using color 3 V_1 , V_2 , Γ_{12} , Γ_{13} , $\Gamma_{14,5}$, $\Gamma_{14,5}$, $\Gamma_{14,5}$, Γ_{15} Similarly there is a path from v_ to v_ moting only vertices of elors v_ 2 and 4. Contradiction!

Given a graph F, a subgraph of F is formed by taking a subset of the edges of F together with all their vertices. An induced subgraph of F is formed by takin a subset of the vertices of F together with all their edges in F	S S S
$\Gamma = \frac{2}{5} + \frac{2}{5} + \frac{2}{5} + \frac{2}{5} = \frac{1}{5} = $	eph
eg. 'I is an induced subgraph of Γ .	
An induced subgraph of [is a subgraph of I, but not conversely.	• •
A k-clique in Γ is a complete subgraph of Γ , i.e. a subset of the vertices, any two of which are joined. In Γ above, $\xi_{1,2}, 6$? is a clique (in fact a 3-clique). The clique number of	-
denoted w(T), is the size of the largest clique in T. It is hard to compute	• •
W vs. ω $\omega(\Gamma)$. Roman Greek Theorem For every graph Γ , $\chi(\Gamma) \ge \omega(K)$. $3 = \frac{2}{2} + \frac{2}{3} - \frac{2}{3$	3
Warning: this not equality! For the Petersen graph P, $\omega(P)=2$. For the Potersen graph? Warning: The vertices in a elique of size $\omega(\Gamma)$ require $\omega(\Gamma)$ different colors. P.	zergh

Dual to the clique number w(r) we have the coclique number a(r) which is the maximum
number of vertices in Γ , so two of which are joined. (This is $\alpha(\Gamma) = \omega(\Gamma)$ where
F is the complementary grouph). Coclignes are also called independent sets of vertices
Eq. $\alpha(P) = 4$. $ \chi(P) \ge \frac{10}{4} = 2.5 \implies \chi(P) \ge 3.$
Z ZI,2,3] is a coclique which is not contained in any larger coclique; it is a maximal coclique.
4 A maximum coclique (i.e. a coclique of maximum size) is \$1,3,7,8}
This is maximum size because P has vertex set 20,3,9,6,13 U \$2,7,5,
as a union of two 5-cycles (circuits of length 5). Any set of size 4,83
at least 5 vertices has either 3 on the inner 5-cycle \$2,7,5,4,83 or 3 vertices on
the outer scycle \$0,3,9,6,13. In either case there is an edge in that 5-cycle
joining two vertices we have chosen.
Theorem $\chi(\Gamma) \ge \frac{ V }{\alpha(\Gamma)}$ where $ V =$ the number of vertices = the order of Γ .
Proof Let k= g(r). Properly color the vertices 1,2,, k and let V: be the subset
of vertices colored i, for i=1,2,, k. This gives a partition V = V, 11 V2 11 11 Vk
V. V. V. = union of V. and V.; V. LIV. = disjoint union of Vi and V;). Each Vi is a
$\operatorname{cochque} \operatorname{so} \left(V_{i}\right) \leq \alpha\left(\Gamma\right) \operatorname{so} \left V\right = \left V_{i}\right + \left V_{k}\right + \dots + \left V_{k}\right \leq \alpha\left(\Gamma\right) + \alpha\left(\Gamma\right) + \dots + \alpha\left(\sigma_{T}\right) = k \alpha\left(\Gamma\right) \operatorname{so}_{T} = k \neq \frac{ V }{\alpha(T)}$
k

March	M 6 13	W 1 8 15	F 3 10 17	Spring	Test 1 Break1	· · ·	Wed		Mar	- 8	•	· · ·	•	· · ·	•		•	· · ·	• •	•	· · ·	•
	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· · ·	· · · · · · ·	· · · · ·	· · ·	· · · ·	•	· · · ·	· ·	•	· · ·	•	· · ·	•	· · ·	•	· · ·	· ·	•	· · ·	•
6		5	= (· · · · · · ·		· · ·	· · · ·	•	· · · ·		•	· · ·	•	· · ·	•	· · ·	•	· · ·	• •	•	· · ·	•
				ρ	· · · · ·	· · ·	· · · ·	•	· · · ·	· ·	•	· · ·	•	· · ·	•	· · ·	•	· · ·	• •	•	· · ·	•
Using G= A) nc 	itty		xt-tub	NC.	· ·	· · · ·	•	· · · ·	· ·	•	· ·	•	· ·	•	· ·	•	· · ·	• •	•	• •	•
G = < (G[=	(1,3) 4	(4,5)(`6,7)((8,9),	(0,2) (1	4)	(3,5	·)(6,9) (7	8			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · ·	•	· · ·	