Combinatorics

Book 3

Fourth method: Decompose $F(x) = \frac{1+x}{1-x-x^2}$ using partial fractions. Note: The factors Lax, 1-px reveal the reciprocal roots a, B. (The roots Factor the denominator 1-x-x2 = (1-ax)(1-px) The roots are the same as the roots of x^2+x-1 i.e. $-\frac{1\pm\sqrt{1+4}}{2} = -\frac{1\pm\sqrt{5}}{2}$ are a, B. 2 (-1 ∓ √5) The reciprocal roots are $\frac{2}{-1\pm\sqrt{5}}$ $\frac{-1\pm\sqrt{5}}{-1\pm\sqrt{5}}$ 175 $\alpha = \frac{1+\sqrt{5}}{2} \approx 1.618$ (the golden ratio) eciptocal nois $\alpha + \beta = 1$ $\alpha_{-\beta} = \sqrt{5}$ $\beta = \frac{1 - \sqrt{5}}{2} \approx -0.618$ 1+1-1=0 as = -! Always use a, s in the algebraic simplification $1+\alpha-\nu^2=0$ $\alpha^2 = \alpha + 1$ $\beta^2 = \beta + 1$ $A \sum_{n=0}^{\infty} (\alpha x)^n + B \sum_{n=0}^{\infty} (\beta x)^n$ $F(x) = \frac{1+x}{1-x-x^2} = \frac{1+x}{(1-\alpha_x)(1-\beta_x)}$ $\frac{A}{1-\kappa_T} + \frac{B}{1-\beta_T}$ $\sum_{n=0}^{\infty} (A\alpha^{n} + B\beta^{n}) x^{n}$ n ~ Aa" (exponential growth rate)

$I = x - x^{-1} (I - ax)(I - px)$	$k^{2} \alpha + 1$ $\beta^{2} = \beta + 1$
$1 + x = A (1 - \beta x) + B (1 - \alpha x)$ $1 + \frac{1}{\alpha} = A (1 - \frac{\beta}{x})$ $1 + \frac{1}{\alpha} = A (1 - \frac{\beta}{x})$ $\alpha^{2} = \alpha + 1 = A (\alpha - \beta) = \sqrt{5}A \implies A^{2} = \frac{\alpha^{2}}{\sqrt{5}}$ $B = -\frac{\beta^{2}}{\sqrt{5}}$ $B = -\frac{\beta^{2}}{\sqrt{5}}$ $B = -\frac{\beta^{2}}{\sqrt{5}}$ $B = -\frac{\beta^{2}}{\sqrt{5}}$ $\frac{(1 + \sqrt{5})^{n+2}}{\sqrt{5}} = \frac{(1 + \sqrt{5})^{n+2}}{\sqrt{5}} = \frac{(1 + \sqrt{5})^{n+2}}{\sqrt{5}}$	at β. a ← β interchanged by algebraic conjugation
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(<i>f</i> is <u>asymptotic</u> to g)
eq. $\sqrt{n^2 + 10n} \rightarrow \infty$ con $\rightarrow \infty$ i $\sqrt{n^2 + 10n} \sim n$ con $\rightarrow \infty$. Check: $\frac{\sqrt{n^2 + 10n}}{n} = \sqrt{1 + \frac{10}{n}} \rightarrow 1$. ($\lim_{n \to \infty} \sqrt{1 + \frac{10}{n}} = 1$). $\sqrt{n^2 + 10n} - n = (\sqrt{n^2 + 10n} - n) - \frac{\sqrt{n^2 + 10n}}{\sqrt{n^2 + 10n}} = \frac{10n}{\sqrt{n^2 + 10n}} = \frac{10}{\sqrt{1 + \frac{10}{n}}}$	+ 1 -> 5 aa m>no

$n^{3} + 7n^{2} \sim n^{3}$ as $n \to \infty$ Since $\frac{n^{3} + 7n^{2}}{n^{3}} = 1 + \frac{7}{n} \to 1$ as $n \to \infty$ yet $(n^{3} + 7n^{2}) - n^{3} = 7n^{2} \to \infty$ as $n \to \infty$
In our case the convergence is stronger: not only is $a_n - Aa^n$ but moreover $a_n - Aa^n \rightarrow 0$. We can actually evaluate a_n by taking the closest integer to Aa^n . $\frac{1}{1-u} = 1+u+u^2+u^3+$
Another example of partial fraction decomposition:
$\frac{1+2x-3x^2}{1+x+4x^2+4x^3} = \frac{1+2x-3x^2}{(1+x)(1+4x^2)} = \frac{1+2x-3x^2}{(1+x)(1+2ix)(1-2ix)} = \frac{A}{1+x} + \frac{B}{1+2ix} + \frac{C}{1-2ix}$
$= A \sum_{n=0}^{\infty} (-1)^{n} x^{n} + B \sum_{n=0}^{\infty} (2i)^{n} x^{n} + C \sum_{n=0}^{\infty} (2i)^{n} x^{n} = \sum_{n=0}^{\infty} (A(-1)^{n} + B(-2i)^{n} + C(2i)^{n}) x^{n}$
$\frac{\partial R}{(1+\chi+4\chi^2+4\chi^2)} = \frac{1+2\chi-3\chi^2}{(1+\chi)(1+4\chi^2)} = \frac{A}{1+\chi} + \frac{B\chi+C}{1+4\chi^2} \qquad \qquad$
(his fact does a grow? The reciprocal roots of 1+x+4x+4x+4x and 1, ci, iii /±2i=2.
$q_{n} \sim c 2^{n}$ From Maple it seems $a_{n} \sim \frac{1}{10} 2^{n}$. $No! \qquad \qquad$

$F(x) = \frac{1+2x-3x^2}{(1+x)(1+4x^2)} = \frac{A}{1+x} + \frac{Bx+C}{1+4x^2} = \frac{-\frac{4}{5}}{1+x} + \frac{\frac{1}{5}x+\frac{4}{5}}{1+4x^2} = -\frac{4}{5}(1-x+\frac{2}{5}-x^3+x^4-x^4-x^4) + \frac{1}{5}(1+4x^2) $
$\int_{1-\mu} = 1 + u + u^{2} + u^{3} + u^{4} + \cdots$ $\int_{1-\mu} = 1 + u + u^{2} + u^{3} + u^{4} + \cdots$ $= \sum_{n=0}^{\infty} q_{n} x^{n}$
esthere $q_n = (-1)^{n+1} + \int \frac{q}{5} (-q)^{\frac{n}{2}}$ if n is even
Alternotively, $(different constants A, B, C)$ $\left(\frac{1}{5}(-4)^{\frac{n-1}{2}}\right)$ if u is odd.
$F(x) = \frac{A}{1+x} + \frac{B}{1+2ix} + \frac{C}{1-2ix} = -\frac{4}{5} + \frac{9}{5} - \frac{1}{10}i + \frac{9}{5} + \frac{1}{5}i$ (Something like this
$F(x) = \frac{A}{1+x} + \frac{B}{1+2ix} + \frac{C}{1-2ix} = \frac{-\frac{A}{5}}{1+x} + \frac{\frac{q}{5} - \frac{1}{10}i}{1+2ix} + \frac{\frac{q}{5} + \frac{1}{10}i}{1-2ix} (\text{Something like-this})$ $[A_{n}] \text{grows exponentially"} (\text{const. 2"}) \text{look at MAPLE session})$ $lant q_{n} \neq c2^{n}. \text{This happens leacause the denominator of F(x) has two reciproced roots of the same largest absolute value.}$
Another example in counting walks in a graph where this issue arises:
$A = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$ $w_n = w_n(i, i) = number of walks of length n from vertex 1 to itself.$ $\frac{n \ 0 \ i \ 2 \ 3 \ 4 \ 5 \ 6 \ \cdots}{w_n \ i \ 0 \ 2 \ 0 \ 4 \ 0 \ 8 \ \cdots}$ $W(x) = \left[\left[I - xA \right]^2 = \left[\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}^2 + \left[\frac{1 & -2x}{x} \right]^2 \right]$
$ \begin{array}{c} w_{n} \mid 1 0 2 0 4 0 8 \cdots \\ \begin{bmatrix} \alpha & h \\ c & d \end{bmatrix}^{-1} = \begin{bmatrix} d & -b \\ 1 - 4x^{2} \begin{bmatrix} 1 & 2x^{2} \\ x & 1 \end{bmatrix} = \begin{bmatrix} w_{11}(x) & w_{12}(x) \\ w_{21}(x) & w_{22}(x) \end{bmatrix} $

$w(x) = w_{11}(x) = \frac{1}{1-4x^2} = 1+4x^2 + 16x^4 + 64x^6 + 256x^8 + \cdots$
$w_n = w_n(c, 1) = \int dr if n is odd$
(2" it n is even. Demoninator 1-4x = (1+2x)(1-2x) has two (roots ±2 having the same absolute value is
Remarks: $\frac{1}{1-4x^2}$ is preferred over $\frac{-\frac{1}{4}}{x^2-\frac{1}{4}}$ since we want to use the geometric
Series $\frac{1}{1-u} = 1 + u + u^2 + u^3 + \cdots$
Exponential growth $f(n) \sim ca^n$ (c, a, k constants) Polynomial growth $f(n) \sim cn^k$ eg. $4n^3 + 7n^2 + 1/n + 53 \sim 4n^3$
Exponential growth $f(n) \sim cn^{h}$ Polynomial growth $f(n) \sim cn^{h}$ eg. $4n^{3} + 7n^{2} + 1/n + 53 \sim 4n^{3}$ Other counting problems leading to a sequence where generating functions are used to express the solution: Let a be the number of permitations of $[n] = \{1, 2,, n\}$ (i.e. the number of
ways I can list a stadents in order). Then an = n! If generating
function is $F(x) = \sum_{n=0}^{\infty} n! x^n = 1 + x + 2x^2 + 6x^2 + 24x^4 + 120x^5 + 720x^6 + 5040x^7 + \cdots$
$G(x) = \sum_{n=0}^{\infty} (n!)^{2} x^{n} = 1 + x + 4x^{2} + 36x^{3} + 576x^{4} + \cdots$

(k) is the number of k-subsets of an n-set i.e. the under of bitstrings of length a having k d's (and not zeroes). If $a_k = \binom{n}{k}$ where n is fixed then the generating function for the Sequence ao, a, az, ... 15 $A(x) = \sum_{k=0}^{\infty} q_k x^k = \sum_{k=0}^{\infty} {\binom{n}{k}} x^k = (1+x)^n$ eg. $A_q(x) = {\binom{q}{2}} + {\binom{q}{2}} + {\binom{q}{2}} + \dots = 1 + 4x + 6x^2 + 4x^3 + x^4 = (1+x)^7$ Binomial Theorem Theorem 1 and a provide the second seco The Binomial Theorem $(1+\chi)^m = \sum {\binom{m}{n}} \chi^m$ holds for all real values of m. If m is a non-negative integer then $\binom{m}{n} = \frac{m!}{n! (m-n)!}$ is a non-negative integer (positive for n = 0, 12, ..., m i zero for n > m) in which case $(1+x)^m$ is a plynomial in x of degree m. This is a special case of the Binomial Series. The Binomial coefficients are found by had from Pascal's Triangle (m) = entry n in now in of Pascal's Triangle 1 95 10 10 5 10 10 15 20 15 eq. (2) = entry 2 in now 4 (start counting at 0, 1, 2, ...)

The recursive formula for generating Paral's Triangle is $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ $\binom{n-1}{k-1}$ $\binom{n-1}{k}$ $\binom{n-1}{k}$ Three proofs of Pascal's formula $\binom{n}{k} = \binom{n-1}{k-r} + \binom{n-1}{k}$: Combinatorial Proof (counting proof): (onesider the n-set $\lfloor n \rfloor = \{1, 2, \dots, n\}$. Any k-subset $B \subseteq \lfloor n \rfloor$ is of one of the following two types: (i) $n \in B$. In this case $B = \{n\} \cup B'$ where $B' \subseteq \{n-i\}$, |B'| = k-i. There are (k-1) ways to choose B' in this case. (ii) $n \notin B$. In this case $B \subseteq [n-1]$. There are $\binom{n-1}{k}$ choices for B. The sum in cases (i) and (ii) must give $\binom{n}{k}$. in this Cop. Generating Function Proof: Compare coefficients of the on both sides of $(1+x)^{2} = (x+1)(x+1)^{2}$ $1 + n x + \binom{n}{2} x^{2} + \cdots + \binom{n}{k} x^{k} + \cdots + x^{n} = (1 + \pi) (1 + \binom{n-1}{k} x + \cdots + \binom{n-1}{k} x^{k-1} + \binom{n-1}{k} x^{k} + \cdots + x^{n-1})$ which gives $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

(k-1)! (n-k)! + (n-1)!(k-1)! (n-k)!Third Proof $\binom{n-1}{k-1} + \binom{n-1}{k} =$ $\frac{(n-i)! k}{(k-i)! (n-k) (n-k-i)! k} + \frac{(n-i)! (n-k)}{(n-k-i)! (n-k-i)! (n-k)}$ (n-1)! k $n! = n \cdot (n-1)!$ (n-i)!k + (n-i)!(n-k)(k-i)! (n-k-i)! k(n-k) n(n-r)! $n (n-r)! = \frac{n!}{k! (n-k)!} = \binom{n}{k}$ $A_{n}(x) = (x + 1)^{n} = (x)^{n}$ $2' = (1+1)'' = \sum_{i=0}^{n} \binom{n}{i} = \binom{n}{0} + \binom{n}{i} + \binom{n}{2} + \dots + \binom{n}{n} = \text{the sum of the entries in row } n \text{ of Pascal's triangle.}$ A combinatorial explanation for this result is 2" = number of subsets of [n] = ~ (number $2^{n} = number of Subsets of [n] = \sum_{i=0}^{\infty} (number of i-subsets of (n)) = \sum_{i=0}^{\infty} {\binom{n}{i}}$ (or $2^{n} = number of bitstrings of length n which can be rewritten as <math>\sum_{i=0}^{\infty} {\binom{n}{i}}$ where ${\binom{n}{i}}$ is the number of bitstrings of length a having exactly i I's.)

HW3 #2 # similar to the example on the handont on Fibomacci mulers print's' print's' A= [' 0] This directed graph is an example of a nondeterministic finite automaton with two states (), (2. flow many walks are there starting at vertex 1? $w_n = w_n(1,1) + w_n(1,2)$ Printent 0101000 represents the walk (1,2,1,2,1,1,1,1) of length 7 The walks of length n starting at vertex 1 are in one-to-one correspondence with 11-free bitstringes of length n. More generally, many comiting problems (where recursion plays a role) are equivalent to counting welks in graphs. Recall: Binomial Theorem $(x+y)^n = \sum_{k=0}^n {\binom{n}{k}} x^{n-k} y^k$ where ${\binom{n}{k}}$ (binomial coefficients "n choose k") equals the number of k-subsets of an n-set. ${\binom{n}{k}} = \begin{cases} \frac{n!}{k!(n-k)!} & \text{if } k \in \{0, 1/2, \cdots, n\} \end{cases}$ (n>0 integer) 0 otherwise Multinomial Theorem $(x_r + x_2 + \dots + x_r) = \sum_{i_1, \dots, i_r} (i_{i_1}, i_{i_2}, \dots, i_r) x_r^{i_r} x_2^{i_2} \dots x_r^{i_r}$ $(i_1, i_2, \dots, i_r) = \frac{n!}{i_1! i_2! \cdots i_r!}$ if $i_1 \cdots i_r \ge 0$, $i_1 \cdots i_r \ge n$; 0 otherwise Maltinomial Coefficient

$e_{g_{-}}(x+y+z)^{3} = \sum_{\substack{i+j+k=3\\i+j+k=0}} (i, j_{1,k}) x^{i} y^{j} z^{k} = x^{3} + y^{3} + z^{3} + z^{3}$	$3x^2y + 3xy^2 + 3x^2 + 3x^2 + 3y^2 + 3y^2$
$\binom{3}{(3,0,0)} = \frac{3!}{3!0!0!} = \frac{6}{6\cdot1\cdot1} = 1 = (0,3,0) = (0,0,3)$) ((rinomial expansion)
$\binom{3}{2, l_1 0} = \frac{6}{2 \cdot (\cdot)} = 3 = \binom{3}{0, 2, 1} = \cdots$	Cluck: $3^3 = [+(+) + 3 + 3 + 6 = 2]$
$\binom{3}{1, 1, 1} = \frac{3!}{1! 1! 1!} = \frac{6}{1! 1!} = 6$	(evaluating at (i, i, i)).
How many words can be formed by permiting the (words are stringe of letters where the order	letters of MISSISSIPPI ? is important.)
$\frac{(1!)!}{(!4!4!2!)} = (1, 4, 4, 2) = 34,650$	· · · · · · · · · · · · · · · · · · ·
How many words can be formed by permuting the $\binom{11}{5, 6} = \frac{11!}{5! 6!} = \binom{11}{5} = \binom{11}{6} = 462$	
Say M&M's are made in 6 litterent colors. How have a handful of 10 M&Ms? or n M&M's? a. = muniber of ways to have a handful of n	many different ways can we $M&Ms$? $\frac{n \parallel 0 \mid 2 \cdots}{a_n \parallel 1 \mid 6 \mid 21 \cdots}$

If MRM's come in the colors red, blue, green orange, yellow, brown, then there are ("5") ways to draw a handful of ten MRM's e.g. X is a divider R RXXEXOOOOXYXBr Br * * XX * X * * * X * X * * represents the color distribution red blue green orange yellow brown 2 red 2 red 0 blue 1 green 4 orange 1 gellow Z brown 10 M& M's The possible color distributions for a handful of 10 M&M's are in one-to-one correspondence with the number of words of length 15 over a binary alphabet '*', 'X'. So the number of handfuls of 10 M&M's which come in 6 colors is (15). If M&M's come in k colors and we select n M&M's from this batch, the number of possible color distributions is $\binom{n+k-1}{k-1} = \binom{n+k-1}{n}$.

O Suppose I want to hand out a books (all different) to k students. How many ways can I do this ? kx kx ... x k = k choices. $\begin{pmatrix} n+k-1\\n \end{pmatrix}$ n fimes Ettow many ways can I hand out n identical silver dollars to k students? Eg. I hand out 10 identical silver dollars to 6 students. 00 < 00 0000 0 000 0 00 Auswer: $\binom{15}{5} = \binom{15}{10}$ Note: Problem () is comping functions [n] -> [k] In Problem (2) what if we require each student to get at least one of the silver dollars? Instead of $\binom{10+6-1}{10}$, the answer is $\binom{4+6-1}{4} = \binom{9}{4}$.

Suppose I want to hand out k different books a way that each student gets at most one be we distribute the books?	fons ok. Hou	students, s many	ih Such Ways can
	This eq.	uels zero	if k>n.
P(n,k) = n(n-1)(n-2)(n-k+1) no. of choices 2nd 3rd k the book of student to book give book 1 to			
P(a,k) = 0 if k < n $P(a,k) = a! if k = n$	· · · · · · · ·	· · · · · · · · ·	
P(n, k) is also denoted n (k) or various other n	stations		
("descending factorial" or "falling	Tacrion /	· · · · · · · ·	· · · · · · · · · ·
P(a, k) is the number of one-to-one maps [k]. (injections)		· · · · · · · ·	· · · · · · · · ·
Question: How wany surjections [k] -> [n]? i.e. how many ways can we hand out k different want every Istadent to get at least one book)?	(fin books f	ctions the	lare onto, to if we

Binomial Theorem (1+x) = Z(1/k) xk What if m is not an integer? K= $\binom{m}{k} = \frac{m!}{k! (m-k)!} = \frac{m \cdot (m-i)(m-2) \cdots (m-k+i) \cdot (m-k) \cdot (m-k-i)(m-k-2) \cdots}{k! (m-k) (m-k-2) \cdots} = \frac{P(m,k)}{k!}$ $P(m,k) = m(m-i)(m-2) \cdots (m-k+i) \text{ is defined for all } k \in \{0,1,2,3,4,\cdots\}$ and m any real mmber. P(m, 0) = 1 $P(\alpha, 1) = m$ や(え,1) P(m, 2) = m(m-1)eg. $\sqrt{1+x} = (1+x)^{\frac{1}{2}} = \sum_{k=0}^{\infty} {\binom{1}{2}} x^{k} = 1 + \frac{1}{\frac{1}{2}} x + \frac{1}{\frac{2}{2!}} x^{2} + \frac{1}{\frac$ = $1 + \frac{1}{2}\pi - \frac{1}{8}\chi^2 + \frac{1}{16}\chi^3 + \cdots$

Suppose I want to give out a silver dollars to 3 students x, y, z. How many ways can I do this? This is the same as conting bitstrings of length n+2 having 2 ones and a scroes e.g. xyzt <7001010000 represents one way to distribute 7 silver dollars to x, y, z $\binom{9}{2} = \frac{9.8}{2 \cdot 1} \stackrel{\text{res}}{=} 2!$ = 36 ways to distribute 7 identical silver dollars to 3 students The term x'y'z' of degree it jtk represents how we can give i coins to x, j'coing to y, k coins to z. The number of ways to distribute n coins to 3 students is the number of terms of degree n in our expansion. To isolate terms of degree n in the expansion, to the following: replace x, y, 2 by tx, ty, tz. $\overline{(1-tx)(1-ty)(1-tz)} = 1 + t(x+g+z) + t^{2}(x^{2}+y^{2}+z^{2}+xy+xz+yz) + t^{3}(x^{3}+y^{3}+\cdots+xyz) + \cdots$ The coefficient of t in this series gives all the ways to distribute a coins to three students x_{y_1} ? The number of ways to distribute a coins to 3 students, replace x_{y_1} ? by 1. $\frac{1}{(1+t)^3} = 1 + 3t + 6t^2 + 10t^3 + \cdots$

For this we can use the Binomial Theorem. How many ways can we distribute n identical silver dolkars to k students? Call the students X1, X2, ..., Xk. k $\prod_{i=1}^{l} \frac{1}{1-x_{i}} = \prod_{i=1}^{l} \left((+x_{i}) + x_{i}^{2} + x_{i}^{3} + \cdots \right) = \sum_{i=1}^{l} \chi_{i}^{2} \times \chi_{k}^{2}$ In order to collect terms of each degree a>0, replace x..., x. by tx.,..., tx. $\prod_{i=1}^{n} \frac{1}{1-tx_i} = \sum_{i_1, \dots, i_k \ge 0} t$ Now replace π_1, \dots, π_k by I. $\prod_{i-t} = \prod_{i-t} = \geq ($ Counter of monomials xi ... Ne of degree it it is the ty = n mules of solations of ir+ is + ... + i > n (in, ..., ik 20) = mules of ways to give 1 coins to

$\frac{1}{(1-t)^{k}} = (1-t)^{-k} = \sum_{r=0}^{\infty} {\binom{-k}{r}} (-t)^{r} = \sum_{r=0}^{\infty} \frac{(-k)(-k-r)(-k-r+r)}{r!} (-1)^{r} t^{r}$
$= \sum_{r=0}^{\infty} \frac{(n+k-1)(k+2)\cdots(k+r-1)}{r!} \frac{(n+k-1)}{r!} (n+k-$
Then s the number of ways to give k identical coins to k students is $\binom{n+k-i}{n} = \binom{n+k-i}{k}$
Number of ways to distribute 7 identical coins to 3 students is the coefficient of t^7 in $\frac{1}{2} = 1+3t+6t^2+10t^3+15t+21t+28t+36t^7+\cdots$ $\binom{9}{2} = 36$
$The sequence of coefficients is \binom{n}{2} = 1, 3, 6, 10, 15, 21, 28, 36, \dots is the triangular numbers\Delta \Delta $
1 3 6 10 In a city downtown, all streets run north-south and east-west, forming a grid. How many ways can you travel from one i-tersection to another intersection that to n blocks north and a blocks east if we require a path of shortest distance (2n blocks)?
is a blocks north and a blocks east if we require a path of shortest distance (ch blocks)?

	ENNENEE	ĒN	There are n blocks	(2n) short est north and a sequence	peths in the n blocks	east.	grid 7	to walk	
eg. (8		· · · · · ·	This gives	a sequence	(2, 6, 20	, 70 _,			
words of over the	length 8 binary	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·		· · · · ·		
acphabel		 		T 9 T 10 10 5 15 20 15		· · · ·	· · · · ·	· · · ·	
· · · · · · ·		· · · · · ·	1 1 7 21	35 35 21	· · · · · · · · · · · ·	· · · ·	· · · ·	· · · ·	
what is	the generation	ng functi			· · · · · · · ·		· · · ·		
				· · · · · · · ·	е. 		1100 t	e,	
This is Big	$\sum_{n=0}^{2n} \binom{2n}{n} x^{n} =$ $a \text{warmup}$ $l \text{Treorem}.$	to our	next problem	In bot	r cases vi				
CINONCIA									

 $A(x) = \sum_{n=0}^{\infty} {\binom{2n}{n}} x^n = \sum_{n=0}^{\infty} \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \cdots \cdot (2n)}{1 \cdot 2 \cdot 3 \cdot \cdots \cdot n \cdot 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n} x^n = \sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1) \cdot 2 \cdot 4 \cdot 6 \cdot \cdots \cdot 2n}{1 \cdot 2 \cdot 3 \cdot \cdots \cdot n} x^n$ $= \sum_{n=0}^{\infty} \frac{1\cdot 3\cdot 5\cdot \cdots (2n-1)}{n!} 2^{n} x^{n} = \sum_{n=0}^{\infty} \frac{(\frac{1}{2})(\frac{3}{2})(\frac{5}{2})\cdots (\frac{2n-1}{2})}{n!} (-4)^{n} x^{n}$ $= \sum_{n=0}^{\infty} \frac{P(-\frac{1}{2}, n)}{n!} (-4x)^{n} = (1+(-4x))^{\frac{1}{2}} = \frac{1}{\sqrt{1-4x}} = 1+2x+(6x^{2}+20x^{3}+70x^{4}+...)^{\frac{1}{2}}$ This time count shortest paths (distance 2n) in a city grid where we must walk a blocks worth and a blocks east without going above the main diagonal "y = x": Cn = munker of solutions EENN ENEN Ca is the ath Catalan unnels. C. is the number of Dyck paths of length 24 defined above. EEENNN EENENN EENNEN ENEENN ENENTEN After observing C= 1, we need a recurrence formula for Cn, ELEENNIN ELENBINN ELENNENN ELENNNEN ELENENNN EENNEENN

The Catalan numbers arise in many contexts. Eq. How many ways can we join vertices of a convex a-gon to form a subdivision into n-2 triangles? Ch-2 to a convex a gon to form a subdivision $\bigwedge_{C=1} \bigcap_{C=2} \bigcap_{C=2} \bigcap_{C=5} \bigcap_{$ Convex 4-gen nou · corverse C = 14Consider a product of n factors 11, 112.... 11, which is to be evaluated by multiplying 2 at a time. How many ways can the product be parenthesized to achieve the answer? n=1: (a) Co = 1 may N= 2; (96) C,= 1 Way n= 3: (ab)<, a (bc) C2 = 2 ways n = 4: (ab)(cd), ((ab)c)d, (a(bc))d, a((bc)d), a(b(cd))C= 5 ways

Recurrence formula for Cn, n>1 (number of Dyck paths)
Recurrence formula for (n, n) (n, n) (k, k) (k, k) (
n-h the Duck path returns to the line y=x
(k,k) ie. k e {1,2,, n} is the smallest number for strich (k,k) is in
the Dycle path.
The number of choices for the portion of the Dyck path from (k,k) to
$(o_{r}o)$ $(a_{1}n)$ is C_{n-k} .
0 (1,0) km n The number of choices for the portion of the path from (0,0) to (k,k) is not exactly (k since that
from (0,0) to (k,k) is not exactly is since that
would include paths that possibly hit the line y=x before (k,k). The first portion of the Dyck path
consists of: one block east, then a Dyck path from
(1,0) to (k,k-1), then one block north. There are
" Ck-, such Dyck paths in this (k-1) x (k-1) Square
$S_{O} C_{n} = \sum_{k=1}^{\infty} C_{k-r} i.e.$
$C_r = C_0 C_0 = \frac{(\cdot)}{2} = 1$
$C_2 = C_0 C_1 + C_1 C_0 = 1.1 + 1.1 = 2$
$C_3 = C_0 C_2 + C_1 C_1 + C_2 C_0 = (-2 + 1 + 2 - 1) = 5$
$C_{4} = C_{0}(2 + C_{1}C_{2} + C_{2}C_{1} + C_{3}C_{0} = 5.1 + 2.1 + 1.2 + 1.5 = 14$

The generating function For Cn is $1 + x + 2x^{2} + 5x^{3} + 14x^{4} + \cdots$ $C(x) = C_{0} + C_{1}x + C_{2}x^{2} + C_{3}x^{3} + C_{4}x^{4} + \cdots$ satisfies $((x)^{2} = (C_{0} + (x + C_{2}x^{2} + C_{3}x^{3} + \cdots)(C_{0} + C_{1}x + C_{2}x^{2} + C_{3}x^{3} + C_{4}x^{4} + \cdots)$ $C_0(_0 + (C_0(_1 + C_1C_0)_X + (C_0(_2 + C_1C_1 + C_2C_0)_X^2 + (C_0C_2 + C_1C_2 + C_2C_1 + C_3C_0)_X^3 + \cdots$ $C_1 C_2 C_3 C_4$ + $\chi (C_x)^2 = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + C_4 x^4 + \cdots = C(x)$ $\chi(x)^{2} - C(x) + 1 = 0 \implies (x)^{2} = \frac{1 \pm \sqrt{1 - 4x}}{2x} = \frac{1 \pm (1 - 2x - 2x^{2} - 4x^{2} - 10x^{4} - 1)}{2x}$ $C(x) + 1 = 0 \implies ((x) - \frac{2x}{2x}$ With the 't' sign, $\frac{2-2x-2x^2-4x^3-10x^4-\cdots}{2x} = \frac{1}{x}-1-x-2x^2-5x^3-\cdots$ So we must use the '-' sign: $(x) = \frac{2x+2x^2+4x^3+10x^4+\cdots}{2x} = (+x+2x^2+5x^3+\cdots)$ (simpare: $(\Xi a_x^*)(\Xi b_x^*) = \Xi (\underbrace{\Sigma a_{n+k}}_{k=0} \chi^n)$ $(f \neq g)(x) = \int f(x-t)g(t)dt$ is the convolution of $f_{,g}$

 $\frac{1-\sum_{k=0}^{\infty}\binom{k_2}{k}(-4\pi)^k}{2\pi} = -\frac{1}{2\pi}\sum_{k=1}^{\infty}\binom{k_2}{k}(-4\pi)^k$ $(G_x) = \frac{1 - \sqrt{1 - 4x}}{2x} =$ $= -\frac{1}{2x} \sum_{k=1}^{\infty} \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)(\frac{1}{2}-3)\cdots(\frac{1}{2}+1k\cdot)}{k!} (-4x) = -\frac{1}{2x} \sum_{k=1}^{\infty} \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(\frac{5}{2})\cdots(-\frac{2k-3}{2})}{k!} (-4x)^{k}$ n = k - ik = n + i $= \underbrace{-1}_{Z_{X}} \sum_{k=0}^{\infty} \frac{\frac{1}{2} \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(-\frac{5}{2}\right) \cdots \left(\frac{2n-1}{2}\right)}{(n+1)!} \left(-4x\right)^{n+1} = \frac{1}{2} \sum_{k=0}^{\infty} \frac{\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdots \frac{2n-1}{2}}{(n+1)!} 4^{n+1}$ $= \sum_{\substack{n=0 \\ n=0}}^{\infty} \frac{1\cdot 3\cdot 5\cdot \cdots (2n-1)}{(n+1)! 2^{n+2}} \cdot 2^{2n+2} \cdot x^{n} = \sum_{\substack{n=0 \\ n=0}}^{\infty} \frac{1\cdot 3\cdot 5\cdot \cdots (2n-1)}{(n+1)! 2^{n+2}} \cdot 2^{2n+2} \cdot x^{n} = \sum_{\substack{n=0 \\ n=0 \\ n=0 \\ n=0 \\ n=0 \\ (n+1)! 2^{n+2}} \cdot 2^{n+2} \cdot x^{n} = \sum_{\substack{n=0 \\ n=0 \\ n=0 \\ (n+1)! n!}^{n+1} \cdot 2^{n} = \sum_{\substack{n=0 \\ n=0 \\ n=0 \\ (n+1)! n!}^{n+1} \cdot 2^{n} = \sum_{\substack{n=0 \\ n=0 \\ n=0 \\ (n+1)! n!}^{\infty} \cdot x^{n} = \sum_{\substack{n=0 \\ n=0 \\ n=0$ $C_{n} = \frac{1}{n+1} {\binom{2n}{n}} eg. C_{4} = \frac{1}{5} {\binom{8}{4}} = \frac{8 \cdot 7 \cdot 6 \cdot 5}{(5 \cdot 3)} = 14.$ Note: C(x) is not a rational function. It is an algebraic function

How many ways can a cashier return 83 cents in change to a customer using pennies, nickels, dimes, and quarters? (Any two pennies are identical; similarly for nickels, dimes, quarters). The generating function F(x): (-x)(1-x*)(1-x*) counts the number of ways to make n cents into change.