Combinatorics

Book 2

Proof If the theorem fails then there is a smallest counterexample Γ with n vertices (so Γ is planar and every planar graph of order $n-r$ has chromatic
number ≤ 5 while $\gamma(r) \geq 6$). We seek a contradiction. I has a vertex number ≤ 5 while $\gamma(\Gamma) \geq 6$). We seek a convention ten
≤ 4 then $\gamma(\Gamma) \leq 5$, a contradiction.) Let Γ' be the graph obtained y_s \leq 5 a contradiction.) Let Γ' be the graph obtained
 y_s \leq 5 from Γ by deliting v and its five edges, y_s \leq 5 so $\gamma(\Gamma') \leq$ 5. Say v_s has color i (i=1,2,..,5), com be proportional varing
 y_s $\$ $= 5.$ Say v_i has color i ($i = 1, 2, \cdots, 5$). can be properly $\leq 5.$ Consider the vertices $V_{13} \subset$ {vertices of Γ } having at most five colors 1,3 only. This graph is bipartite. I can assume v, is joined to v_s in r_s (otherwise $\frac{1}{2}$ and $\frac{1}{2}$ reverse colors 1,3 so that $\frac{1}{3}$ gets then $\chi(f) \leq 5$ is determined to contribute the color is $\chi(f)$ and $\chi(f)$ and $\chi(f)$ and $\chi(f)$ from $\chi(f)$ is $\chi(f)$ from $\chi(f)$ and $\chi(f)$ is $\chi(f)$ and $\chi(f)$ is $\chi(f)$ and $\chi(f)$ is $\chi(f)$ and $\chi(f)$ is $\chi(f)$ and since its neighbors are color $1,2,1,4,5$). Otherwise r_3 has a path from v, to vs. $\frac{v_1}{v_2}$, $\frac{v_2}{v_3}$ Similarly there is a path from $\frac{v_1}{v_2}$ $\frac{v_2}{v_3}$ $\frac{v_3}{v_4}$ $\frac{v_4}{v_5}$ $\frac{v_5}{v_6}$ $\frac{v_6}{v_7}$ $\frac{v_7}{v_8}$ $\frac{v_8}{v_9}$ $\frac{v_1}{v_9}$ $\frac{v_1}{v_9}$ $\frac{v_2}{v_9}$ $\frac{v_1$ k noing 4. s a path from
ponly vertices Contradiction of !
' f olos $\ddot{\mathbf{\Omega}}$ If dg $v \le 4$
graph obtained $v \le 4$
graph obtained $v \le 4$
its five edges,
les color i (i=1,2,..,5), obt
sperices of Γ } haring at
me v_1 is joined to v_5 in Γ_5
sperice colors 1,3 so that v_5
is we are free 3

Given a graph Γ , a subgraph of Γ graph I, a subgraph of I is formed by taking a subset of the edges
ogether with all their vertices. An induced subgraph of I is formed by taking
the vertices of I together with all their edges in I of i together with all their vertices. Given a graph I, e subgr
of I together with all their
a subset of the vertices of I Fiven a graph Γ , a subgraph of Γ is formed by taking a subset of
of Γ together with all their vertices. An induced subgraph of Γ is for
subset of the vertices of Γ together with all their edges in Γ
 Γ is a subgraph of Γ . (not an induced subgraph $F = \frac{1}{2}$ 4 9 eg. $\sqrt{\epsilon}$ is an induced subgraph of Γ =

4. induced subgraph of $\begin{matrix} 2 & 5 \end{matrix}$ is an induced subgraph of
An induced subgraph of $\begin{matrix} 2 & 5 \end{matrix}$ a subgraph of $\begin{matrix} 5 \end{matrix}$, but not conversely. A k-clique in [is a complete subgraph of [, i.e. a subset of the vertices, any two of which are joined.
In [above, {1,2,6} is a clique (in fact a 3-clique). The clique number of [, In I wood, C_1 , of is a signe (m acc a singue). W vs. ω , ω , W , W , W , ω , W , ω , Roman Greek Theorem For every $graph \Gamma, \quad \chi(r) \geq w(k).$ Roman Greek Theorem For every graph Γ , $\gamma(\Gamma) \ge \omega(K)$. 1