Combinatorics

Book 2

The graph Tiv (formed by removing v and its edges from T) has one fewer vertex, so it can be properly colored using at most 6 colors. And since v has at most 5 neighbors in Tiv, there is a color left over which can be used to color vertex v. This gives a proper coloring of T using at most 6 colors (a contradiction)
We will improve this to show that actually 5 colors suffice to properly color every
We will improve this to show that actually 5 colors suffice to properly color every planar graph. 24 \$ \$ \$ \$ \$ \$
Given a graph I, the chromatic number of T, denoted X(T), Abc xXx
is the smallest number of colors we can use to properly color the vertices
is the smallest number of colors we can use to properly color the vertices of [. A proper coloring of the vertices of [is a coloring of the vertices Greek "chi"
such that no edge has both endpoints of the same color.
The theorem of Appel and Haken (1976) is that every planar graph Γ has $\chi(\Gamma) \leq 4$.
Note that $\chi(K_n) = n$. Here K_n is the complete graph of order n. A graph [has $\chi(\Gamma) = 1$ iff it has vertices but no edges.
A graph was ATTING THE F is historite iff I has no circuits of odd length
A graph Γ has $\chi(\Gamma) \leq 2$ iff Γ is bipartite iff Γ has no circuits of odd length.
Computing X(r) is hard in general.
Theorem IF Γ is a finite planar graph then $\chi(\Gamma) \leq 5$. Proof due to the awood.

Proof If the theorem fails then there is a smallest counterexample Γ with n vertices (so Γ is planar and every planar graph of order n-1 has chrometic number ≤ 5 while $\gamma(\Gamma) \geq 6$. We seek a contradiction. Γ has a vertex v of degree ≤ 5 . In fact deg v = 5. (If deg $v \leq 4$ H) vertices in lee prothen $\gamma(\Gamma) \leq 5$, a contradiction.) Let Γ' be the graph obtained χ'_{1} from Γ by deliting v and its five edges, χ'_{2} so $\chi(\Gamma') \leq 5$. Say v: has color i (i=1,2,...,5). Colors 1,3 only. This graph is bipartite. I can assume v_r is joined to v_s in $\Gamma_{13} = \Gamma(v_{rs})$ in part of Γ_{12} rangers colors 1.3 only this graph is bipartite. I can assume v_r is joined to v_s in Γ_{13} (otherwise closed using 12 $\Gamma_{12} = \Gamma(V_{12})$ in part of Γ_{13} , noverse colors 1,3 so that V_3 gets color '. Then we are free to color V using color 3 V_1 , V_2 , Γ_{12} , Γ_{13} , $\Gamma_{14,5}$, $\Gamma_{14,5}$, $\Gamma_{14,5}$, Γ_{15} Similarly there is a path from v_ to v_ using only vertices of elors v_ 2 and 4. Contradiction!

Given a graph I, e subgraph of I of I together with all their vertices. a subset of the vertices of I together is formed by taking a subset of the edges An induced subgreeph of T is formed by taking with all their edges in T $\Gamma = \frac{3}{6} + \frac{1}{6} = \frac{1}{6} =$ eg. ' is an induced subgraph of Γ . An induced subgraph of Γ is a subgraph of Γ , but not conversely. A <u>k-clique</u> in Γ is a complete subgraph of Γ , i.e. a subset of the vertices, any two of which are joined. In Γ above, $\xi_{1,2}, 6\overline{\zeta}$ is a clique (in fact a 3-clique). The clique number of Γ , denoted $\omega(\Gamma)$, is the size of the largest clique in Γ . It is hord to compute W vs. ω $\omega(\Gamma)$. Roman Greek Theorem For every graph Γ , $\chi(\Gamma) \ge \omega(K)$. Warning: this not equality! For the Petersen graph P, $\omega(P)=2$