Combinatorics

Book 1

	#vertices	Connected graphs	All graphs
~	1	1	1
· · · · · · · · · · · · · · · · · · ·	2	1	2
\mathcal{L}	3	2	4
	4	6	11
e z e e 🥄 e e 🖓 e e e g 🏹 e e e e e e e e e e e e e e e e e e	5	21	34
	6	112	156
F(1 1 6 - 76)	7	853	1044
	8	11117	12346
	9	261080	274668
· · · · · · · · · · · · · · · · · · ·	10	11716571	12005168
	11	1006700565	1018997864
Ordinary/Simple Graph on n vertices/nodes	12	164059830476	165091172592
Ordinary / Simple Graph on n vertices modes	13	50335907869219	50502031367952
	14	29003487462848061	29054155657235488
Eq. List all "graphs on 4 vertices:	15	31397381142761241960	31426485969804308768
Eq. List all graphs on 4 vertices:	16	63969560113225176176277	64001015704527557894928
A grach of order n is a pair G = (V, E) where V is a set o subset of pairs & v, w & v, w & V. E.g. the and edges \$1,33, \$2,33 can be illustrated if is in the index of the illustrated if is in the	f n gra	_	L E is a fices 1,2,3,7 two grouply somerphic).

(symmetry) Aa automorphism of a graph is an isomorphism from the graph to itself.

An comorphism from graph (a) to graph (d) it the map with table of values vertex vertex in (n) in d) This is a very special graph having the special property that for every path of length 3 (vertices vo, vi, v2, v2 with vo~ v. ~ v2 ~ v3, v4v2, vo 4 v3, v, 4 v3) in (a) and every path wo~ w1 ~ w2 ~ v4 in (d) (w6+ w2, w0+ w3, v + w3) there is a unique isoneorphism (a) ->(b) mapping v; -> w; this is a <u>Petersen graph</u>. How many isomorphisms are there from (a) 40 (d)? (v 3 × 2 × 2 = 120.

In particular, a Petersen graph has 120 automorphisms.
The graph 12 (a 4-cycle) have & automorphisms Not an automorphism:
$0 \longrightarrow 1 \qquad 0 \longrightarrow 0 \qquad 0 \longrightarrow 0 \qquad (\longrightarrow 7)$ $1 \longrightarrow 2 \qquad 1 \longrightarrow 3 \qquad (\longrightarrow 7)$
2 - 3 3 - 2 - 2 3 - 2 3 - 2 identify The edge 0n3 is mapped to a
identify The graph ~ { has exactly 2 automorphisms The graph ~ { has exactly 2 automorphisms
A graph with only one automorphism? (the graph of order 1, i.e. having only one rester.) A less trivial example with more than one vertex:
Every graph as a degree sequence. The degree of a vertex is the number of its neighbors. The graph ((above) has degree sequence (1,1,1,2,2,2,3). [+(+(+2+2+3=12
If two graphs are isomorphic, they must have the same degree soquence. An isomorphism from I to I' must map each worten to a vertex of the same degree.
If two graphs have the same degree sequence, must they be isomorphic? No, e.g. the graphs (a), (c) on the previous page are not isomorphic, but both have degree sequence (3,7,3,9,3,3,9,3,3). A graph with a verticer and e edges has order a. The degree of vertex v, denoted deg(v), is the number of vertices joined to v. If G has vertices labelled 1,2,3,,n, then the degree sequence of G is (deg(i), deg(e),, deg(n)), permited into increasing order. A graph G is <u>d-regular</u> if deg (v) = d for every vertex v in G (or simply regular). Note: deg(i) + deg(e) + + deg(n) = ze.
A graph with a vertices and e cages now much in the agree sequence of G is (deg(i), deg(2),, deg(n)), vertices joined to v. If G has vertices labelled 1,2,3,,n, then the degree sequence of G is (deg(i), deg(2),, deg(n)), permitted into increasing order. A graph G is <u>dregular</u> if deg (v) = d for every vertex v in G (or simply
$\operatorname{regular}(\mathbf{r}) = \operatorname{regular}(\mathbf{r}) + \operatorname{reg}(\mathbf{r}) = 2e^{-1}$

(Meorem If G is a (timite) simple greeph with e enges, then Z deg(v) = ce where G = (V, L)
Theorem IF G is a (finite) simple graph with e edges, then $\sum deg(v) = 2e$ where $G = (V, E)$, V the set of vertices, E the set of edges. V the set of vertices, E the set of edges.
proof We count in two different ways the number of pairs (V, (V, W3) in (VEV, (V, V)) = =).
Since every edge EV, with has two vertices v, w, there are 20 pairs.
Since each vertex v e V has deg(v) edges, we have
$v \in v, w$ On the other hand, since each vertex $v \in V$ has deg(v) edges, we have $\sum deg(v)$ as the number of such pairs. These answers must agree. \Box
VeV fencing The second the tween a competitors Every competitor
competer with each of the sthess exactly once. Altogether there are $\binom{n}{2} = \frac{n(n-1)}{2}$
To sensed (") = " h choose k" is the number of ways to choose a k-subset of an n-set
Imagine we organize a round robin tournament between a competitors. Every competitor competes with each of the others exactly once. Altogether there are $\binom{n}{2} = \frac{n(n-1)}{2}$. In general $\binom{n}{k} = $ "n choose k" is the number of ways to choose a k-subset of an n-set (i.e. a subset of size k in a set of n elements). $\binom{n}{k}$ is a binomial coefficient.
and in the kainty Fill Discond Theory
(a+b) = = = (n/k) a b n k (the Binomial Theorem)
(a, () ⁵ = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaba + aaaba + aaabb + + bbbbb terms than an
$(a+b)^{5} = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaba + aaaba + aaaba + aaabb + + bbbbb Before collectingterms, there are= (5) a^{5} a^{4} + (5) a^{4} + (5) a^{3} a^{2} + (5) a^{3} a^{4} + (5) a^{5} a^{5} a^{5} + (5) a^{5} $
$(a+b)^{5} = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaab + aaaba + aaaba + aaabb + + bbbbb (a+b)^{5} = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaab + aaaba + aaaba + aaaba + aaabb + + bbbbb = (s)a^{5}b^{\circ} + (s)a^{4}b' + (s)a^{2}b^{2} + (s)a^{2}b^{4} + (s)a^{5}b^{4} + (s)a^{5}b^{5} + (s)$
$(a+b)^{5} = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaab + aaaba + aaaba + aaabb + + bbbbb = (s)a^{5}b^{\circ} + (s)a^{4}b' + (s)a^{3}b^{2} + (s)a^{2}b^{3} + (s)a^{4}b' + (s)a^{5}b^{4} + (s)a^{5}b^{5} +$
$(a+b)^{5} = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaab + aaaba + aaaba + aaabb + + bbbbb = (a+b)^{5} = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaba + aaaba + aaabb + + bbbbb = (a+b)^{5} = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaab + aaaba + aaabb + + bbbbbb = (a+b)^{5} = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaab + aaaba + aaabb + + bbbbbb = (a+b)^{5} = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaab + aaaba + aaabb + + bbbbbb = (a+b)^{5} = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaab + aaaba + aaabb + + bbbbbb = (a+b)^{5} = (a+b)(a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaab + aaaba + aaaba + aaabb + + bbbbbb = (a+b)^{5} = (a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaab + aaaba + aaabb + aaabb + (aabb + (bbbbbb + (bbbbbb + (bbbbb + (bbbbb + (bbbbb + (bbbbb + (bbbbb + (bbbbb + (bbbb + (bbb + (bbb + (bbbb + (bbb + (bb + (b$
$(a+b)^{5} = (a+b)(a+b)(a+b)(a+b)(a+b) = aaaaa + aaaab + aaaab + aaaba + aaaba + aaabb + + bbbbbb = (s) a^{5}b^{\circ} + (s) a^{4}b' + (s) a^{3}b^{2} + (s) a^{2}b^{3} + (s) a^{4}b + (s) a^{5}b^{5} = s^{2}s^{2}s^{2}s^{2}s^{2}s^{2}s^{2}s^{2}$

Proof L	Let (d, da, da) 1	he the degree seque	rice of a graph	there exist two vert de item , n-1). legree n-1, a contradiction	grees 1,2,2,3,4
Proofs are la sentences.	zical arguments H	iet argue the -	truth of our asser	tion. They are always singular plural vertex vertices index indices natrix matrices	has legres square (0,1,1). Zo, 13 is the set of dagress of the vertices
<u>Pigeonhole</u> Pris in the same h function cohere cannot be onto	nciple Suppose obe. If n <h, at="" b<br="">2 (A (= n and (B)). (iii) Assoming</h,>	n pigeons come hast one of the hol = k, then: (i) n=k then f is one-t	to roost in k hole les will be empty. If n 7 k then f canon to one iff it is onto	s. If n>k, then the form other words, if ot be one to one; in	least) wo pigeons must be f: A -> B is any j if n < k then f

adually multiset Graph Reconstruction Problem Starting with a (simple) graph I of order n, we construct a set of n graphs I, Iz, ..., In where I: is formed by deleting vertex : (and all edges from vertex i). The set ZI, Iz, ..., In } is called the deck of I. $e_{q} \Gamma = \bigcap_{q} \Gamma_{q} = e_{q} \Gamma_{q} = e_{q$ Can you (uniquely) reconstruct [from its deck? (muttiset) Consider this set of seven graphs of order 6. Find a graph (of order 7 having this as its deck. Note: From the deck of any graph I, we can reconstruct (deduce) the degree sequence of I. Answer: Given two graphs of order n, how hard is it to check whether they are isomorphic? Assuming T, T' are given, each with n vertices, label the vertices of each graph 1,2,3,...,n. The number of bijections from the vertices of T to the vertices of T' is n! = 1x2x3x...xn (n factorial). (eg. 1!=1, 2!=2, 3!=6, 4!= 24, ..., 10!= \$628800, ...). Check each of the bijections to see if it is an isomorphism. This takes at most n! (2).

We have an algorithm for testing graph isomorphism but it requires (in the worst case) n! (")	• •
We have an algorithm for testing graph isomorphism but it requires (in the worst case) n! (") steps where n is the order of the graphs. n! -> 00 faster than any polynomial in n i.e. if f(n) is a polynomial in n (eg. (")= n(n-i)(n-2)(where k is constant ("") is a polynomial of degree k in n.)	akti
where ke is constant ("i) is a polynomial of degree k in n.)	
i.e. $\lim_{n \to \infty} \frac{n!}{f(n)} = \infty$ for any positive polynomial function $f(n)$.	• •
In fact, n! -> 00 faster than any exponential function c" (c>1) eg.	
$\lim_{N \to \infty} \frac{n!}{10^n} = \lim_{N \to \infty} \left(\frac{1}{10} \cdot \frac{2}{10} \cdot \frac{3}{10} \cdots \frac{9}{10} \cdot \frac{10}{10} \cdot \frac{11}{10} \cdot \frac{12}{10} \cdot \frac{13}{10} \cdots \frac{n}{10} \right) = \infty$	• •
noo 10° nois (10 10 10 10 10 10 10 10 10 10 10) The best algorithms known for testing for graph isomorphism require for fewer than n! (2) steps (even in the worst case). These algorithms have running time that is intermediate between polynomial a exponential.	nd
In the worst case, it takes O(n2) steps to compute the degree sequence of a graph, a polynomial funct	fior
Assume graph P (the Peter sen graph) has 120 actimorphisms. ($P \cong graph(a)$) If Γ is any graph, then either $P \not\cong \Gamma$ or there are 120 isomorphisms $P \rightarrow \Gamma$.	• •
If $f: V(P) \rightarrow V(\Gamma)$ is a isomorphism then for every automorphism $\theta: V(P) \rightarrow V(P)$, we have an isomorphiced vertices vertices vertices of P of Γ	plis
vertices vertices of P of T $V(P) \xrightarrow{f} V(P) \xrightarrow{f} V(T)$	· ·
$\int \left(f \right)^{2} \left($	• •

Given two graphs F, F', there may be no isomorphism from F to F'. But if t	here is an isomorphism
Given two graphs [, [', there may be no isomorphism from [to ['. But if the firm of isomorphisms [-> [' is equal to the number	of antomorphisms of T:
Aut $(\Gamma) = \{ automorphisms of \Gamma \} $ $(1:1) = \{ isomorphisms \Gamma \rightarrow \Gamma' \}$.	
	Aut l'is a group:
Given $\theta \in Aut \Gamma$, $\Gamma \xrightarrow{\theta} \Gamma \xrightarrow{e} \Gamma'$ fo $\theta : \Gamma \xrightarrow{-} \Gamma'$ is an isomorphism.	L: [-> [identity L(x) = x for every
$-\mathbf{P}_{\mathbf{r}} \mathbf{O}_{\mathbf{r}} + \mathbf{P}_{\mathbf{r}} O$	vertex x of r
••• • • • • • • • • • • • • • • • • •	Le Aut [
The map $\theta \mapsto f \circ \theta$ is one-to-one. Given any isomorphism $q: \Gamma \to \Gamma'$, there	$l \circ \theta = \theta = \theta \circ l$
The map $\theta \mapsto f \circ \theta$ is one-to-one. Given any isomorphism $g: \Gamma \to \Gamma'$, there exists $\theta \in Aut \Gamma$ such that $g = f \circ \theta$. Why?	for all $\theta \in Aut \Gamma$;
$\Gamma \xrightarrow{\mathfrak{g}} \Gamma' \xrightarrow{\mathfrak{f}'} \Gamma$	(poo) ot = po(oot) for all p,o, te Aut r
	for every DE Aut T
fog: [-> [is an isomorphism	there exists & Aut I
i.e. $\theta = f \circ g \in Aut \Gamma$	such that $\theta \circ \theta = \iota : \theta \circ \theta$.
and $fo\theta = fo(fog) = (fof) og = g$.	
· · · · · · · · · · · · · · · · · · ·	
n! grons faster than c" for any c>1; n! grows slower than n": (exponential)	
(exponential)	
$\lim_{n\to\infty} \frac{n!}{n!} = \left(\lim_{n\to\infty} \left(\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \frac{4}{n}, \dots, \frac{n-1}{n}, \frac{n}{n}\right) = 0$	
Stirling's Approximation <-1	
$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$ as $n \rightarrow \infty$ i.e. $\lim_{n \rightarrow \infty} \frac{n!}{(\frac{n}{e})^n \sqrt{2\pi n}} = 1$.	
A Dave I Is	
C asymptotic	

Cube: [= 1]		How many autom The cube has 4	norphisms does 8 symmetries ([have ? 24 rototation	l and 2	A other)
Hamming Cerbe graph binary alphabet \$0,13	Hn han as its vertices Two bitsfrings are 11 001 111 10 0000 110 Hz Hz 100					
					· · · · ·	· · · · · ·
4 580 (0, 9000 1000	He has diameter n an Ju Hg, switch 2nd an d (0011, 1011) = d(d # coordinates.	· · · · · · · ·	· · · · · · · ·	· · · · ·	· · · · · ·
Also	The n! permitations of automorphisms of Hn. these are 2" possible bi Subset of the coordinate	t flip operations (² the strings flip a single a	give n!	1, or do	this for
a fg.	Subset of the coordinate Flip the 2 rd and 3 rd bit		0011,1011)= d(0101		· · · · ·	· · · · · · ·
eg. (Aut	$ _{3} = 2^{3} \cdot 3! = 8 \times 6 = 48$		· · · · · · · · ·	· · · · · · · ·	· · · · ·	· · · · · ·

Some intimite graphs; ... How has as its vertices the bitstrings 9,9,9,9,9,9, 9, ... 2-regular, connected $4 \cdots , 4 \in \{0,1\}$ e.g. 10000. Hos is not connected. Randon infinite greghts are connected. They have diameter 2. Figure 8. A map of the Internet. (Reprinted by permission of Bill Cheswick and Lucent Technologies.)

A walk in a graph I is a sequence of vertices (vo, v, vz, ..., v,) such that v, is adjacent to vir, for i=0,1,2,..., v-1. This walk has length r. V= V VE = VG VE = VG A path is a walk without repeating vertices. A trail is a walk which possibly repeats vertices but does not repeat edges. vr) such that via vier for i= 0,1,2,-, v-1 A circuit is a sequence of vertices (vo, v1, vz, ..., where vo, v1, ..., v, are distinct except vo=vr. The complete graph Kn is the graph of order n in which I length 7 x~y for every peir of distinct vertices x, y. k_{0} k_{1} k_{2} k_{3} k_{4} k_{5} etc Note: K_n has $\binom{n}{2} = \frac{n(n-1)}{2}$ edges. The complete bipartite graph Km, is the graph of order m+n and mn edges having vertex set $V_0 \sqcup V_1$ (AUB is the union of two sets, AUB= $\{x : x \in A \text{ or } x \in B\}$ $V_0 \longrightarrow V_1$ (AUB is the disjoint union where $A \cap B = \emptyset$ i.e. A, B are disjoint) $V_0 \longrightarrow V_1$ (Given $x, y \in V_0 \sqcup V_1$, we have $x \sim y$ iff one of x, y is in V_0 and the other is in V_1 . (Here $|V_0| = m$, $|V_1| = n$.

A bipartite graph has vortex set VoLIV, and every alge has one endpoint in Vo, the other
endpoint in V.
endpoint in V_1 . Eg. 6, V_2 is bipartite with partition $\{1,3,5\} \sqcup \{2,4,6\}$. $5 + \frac{1}{3}$ $\{1,3,5\} \sqcup \{2,4,6\}$. $\{1,3,5,7\} \sqcup \{2,46,8\}$
5 至 第 5 7 1 1 {27,68}
Theorem A graph is bipartite it has no circuits of odd length. T 31,3,5,83 LI \$2,4,6,73
A planar graph is a graph which can be drawn in the plane R without crossing
Theorem A graph is bipartite iff it has no circuits of odd length. In $S1,3,5,8$ U $\{2,4,6,7\}$ A planar graph is a graph which can be branch in the plane \mathbb{R}^2 without crossing edges. edges. eg. $K_q = M = M$ is planar. M via the circle-cleard method. This method works well when
edges. eg. K _q = = = is planar. Via the circle-cleard method. this method works well when the graph has a Hamilton circuit: eg. K ₅ = = = is not planar. a circuit passing through each vertex once.
Theorem Ky is not planar. Hamilton
Proof (one way) We must start with a circuit of lengths and find a way to add the remaining 5 edges without crossings. By the Pigeonhole Principle, we must add at least 3 edges inside the circle or at least 3 edges out side the circle. Without loss of generality, three (or nove) edges are to be added inside the circle. But it is easy to see that any three such chords must have a point of crossing. So K5 is not planar.
By the Pigeonhole Principle, we must add at least 5 edges inside the circle or at least
added inside the circle. But it is easy to see that any three such chords must have a
point of crossing. >o hs is not planar.

Stereographic Projection ()) N= north pole (sphere) Theorem K3,3 is not planar. 3 4 6 Proof Use the circle-chord nothed with the \bigcirc K3,3 K2,3 Hamilton circuit (1,2,3,4,5,6,1). We must add the missing 3 edges. Without loss of generality 5 we add at least two edges inside '5 the circle. But the only possible 4 has no Hamilton cirvit so we can't use the circle chord method; but it is edges are {1,4}, {2,5} {3,6} but any two of these chords intersect. So K3,3 is not planar. planar. graph which is also planar. This example T has eg. to Every planar grade has a dual n= 7 Vertices, e= 10 odges r=5 regions. vertices (we'll prove soon) edges n-e+r = 7-10+5=2. r (han n'= e'= r'=

In drawing maps, the question arose: can we color political regions with 4 colors so that no two adjacent regions share the same color? Theorem (Heawood) Every planar map can be properly closed using at most 5 colors. H Theorem (Euler's Formule) Let I be a finite connected graph with a vertices, e=1 edges, and r regions. (we will typically assume there are no loops or multiple edges although this is not strictly required.) Then n-e+r=2. (This says the sphere has Euler characteristic 2 a theorem in topology.) In other words, r=e-n+2. Proof by induction. Let I be constructed by a serie of a transferred in the Proof by induction. Let I be constructed by a sequence of steps starting with a single edge $\Gamma_1 = \dots$; and by adding one edge at a time we reach $\Gamma = \Gamma_e$ when all e edges have been added. $\Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \cdots \subset \Gamma_e = \Gamma$ and convected. Let's say Ti has no vertices, ei edges, ri regions. eg. A IA The has $n_i = 2$ vertices, $e_i = 1$ edge, $r_i = 1$ region, and $n_i - e_i + r_i = 2 - 1 + 1 = 2$. So Euler's formula holds for 1,

Extending Γ_i to Γ_{i+1} , possibly we are adding one new vertex connected to Γ_i by the new edge: $n_{i+1} = N_i + 1$ $n_i - e_{i+1} = (n_i+1) - (e_{i+1}) + r_i = n_i - e_{i+1} = 2$
edge: $\begin{cases} \begin{array}{c} n_{i+1} \leq n_i \leq n_i \leq n_i \\ \vdots \leq n_i \leq $
Another to case to consider is where Tix, has the same vertices as Ti, but we are adding a new edge between two vertices that are already there.
$\int_{i}^{n_{i+1}} \int_{i+1}^{n_{i+1}} \frac{n_{i}}{e_{i+1}} = n_{i} - (e_{i}+1) + (r_{i}+1)$ $= n_{i} - e_{i+1} + r_{i} = n_{i} - (e_{i}+1) + (r_{i}+1)$ $= n_{i} - e_{i} + r_{i} = 2$ or
\overline{U} By induction, Euler's Formula holds for all $i=1,2,,e$; in particular, the formula holds for $\overline{U}_{e} = \overline{U}$.
For graphs that are not connected, n-e+r=1+ number of connected components.
n-e+r = 11-11+4 = 4 = 1+3 n-e+r = 11-11+4 = 4 = 1+3 n munker of connected components

Every map in the plane corresponds to a planar graph. Regions of the map give vertices of our graph. The question is rephrased as follows; Given a planar graph, what is the minimum number of colors required to properly orbor the vettices of the graph? (A proper coloring of the vertices of a grouph is one no edge has two endpoints of the same color.) . which