

Sample Test 1

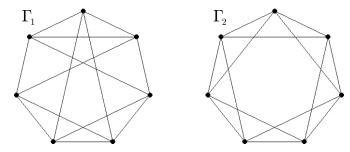
Test 1 will take place on Wednesday, March 8, 2023 during class time. This sample test is intended to resemble Test 1 in approximate length, difficulty, and style, although clearly the content may differ. The actual content will be selected from all class lectures prior to the test.

> Instructions. The only aids allowed are a hand-held calculator and one 'cheat sheet', i.e. an $8.5'' \times 11''$ sheet with information written on one side in your own handwriting. No cell phones are permitted (in particular, a cell phone may not be used as a calculator). Answer as clearly and precisely as possible. *Clarity is required for full credit!* Total value of questions: 100 points (plus 17 bonus points).

All graphs here are undirected, with no loops or multiple edges.

- 1. (18 points) A graph Γ of order 5 has vertex set {bat, got, peg, put, rag}. Two vertices are joined if their names have one letter in common (so 'rag' is joined to 'got'. but not to 'put').
 - (a) Draw the graph Γ as simply as possible.
 - (b) Is Γ planar?
 - (c) Determine the clique number $\omega(\Gamma)$.
 - (d) Determine the coclique number (i.e. independence number) $\alpha(\Gamma)$.
 - (e) Determine the chromatic number $\chi(\Gamma)$.
 - (f) How many automorphisms does Γ have?
- 2. (10 points) Give an example of a planar graph Γ (having more than one vertex and more than one edge) whose dual planar graph is isomorphic to the original graph Γ .
- 3. (15 points) Let n, k be integers with $1 \leq k \leq n$, and let $[n] = \{1, 2, \dots, n\}$. The Kneser graph $KG_{n,k}$ has as its vertices the k-subsets of [n], i.e. the subsets $A \subseteq [n]$ such that |A| = k. Two vertices A, B are adjacent iff they are disjoint (i.e. $A \sim B$ iff $A \cap B = \emptyset$). Draw (a) $KG_{3,2}$, (b) $KG_{4,2}$, and (c) $KG_{5,2}$.
- 4. (12 points) Let Γ be a graph, and let $\overline{\Gamma}$ be its complementary graph.
 - (a) If Γ is disconnected, what is the largest possible value for the diameter of Γ ?
 - (b) Is it possible for a graph and its complement to both be disconnected? Explain.

5. (20 points) Consider the following two graphs:



(a) Determine the clique number $\omega(\Gamma_i)$, coclique number $\alpha(\Gamma_i)$ and chromatic number $\chi(\Gamma_i)$ in each case:

$\omega(\Gamma_1) =$	$\alpha(\Gamma_1) =$	$\chi(\Gamma_1) =$
$\omega(\Gamma_2) =$	$\alpha(\Gamma_2) =$	$\chi(\Gamma_2) =$

- (b) Are the graphs Γ_1 and Γ_2 isomorphic? Explain.
- (c) Determine the number of automorphisms of each of the graphs Γ_i .

 $|\operatorname{Aut}\Gamma_1| = |\operatorname{Aut}\Gamma_2| =$

6. (12 points) There are $2^{\binom{10}{2}} = 2^{45}$ labelled graphs on 10 vertices, i.e. there are 2^{45} different ways to put edges on the vertex set $[10] = \{1, 2, ..., 10\}$. How many of these labelled graphs are isomorphic to the Petersen graph? (Your answer should be expressed as an explicit five-digit decimal number.)

7. (30 points) Answer TRUE or FALSE to each of the following statements.

- (a) For all $n \ge 2$, the Hamming *n*-cube H_n has an Euler circuit. ____(*True/False*)
- (b) For all $m, n \ge 2$, the complete bipartite graph $K_{m,n}$ has a Hamilton circuit. _____(*True/False*)
- (c) There exists a graph Γ of order 5 which is isomorphic to its complement.
- ____(True/False)
- (d) There exists a graph with degree sequence (1, 1, 2, 2, 3, 3). (*True/False*)

(e) There exists an infinite connected graph having infinite diameter.

- (f) A finite 2-regular graph is necessarily a disjoint union of cycles.____(*True/False*)
- (g) A connected graph of order n must have at least n-1 edges. _____(*True/False*)
- (h) The complete graph K_n has n! automorphisms. _____(*True/False*)
- (i) If every vertex in a graph Γ has degree at most 3, then $\chi(\Gamma) \leq 4$.

___(True/False)

(True/False)

(j) If Γ is a 3-regular finite graph, then its number of edges must be a multiple of 3. (*True/False*)