
Solutions to Practice Problems
More complete solutions will be posted at a later date (the problems are not hard, but I

probably need at least another 50 minutes to type up the solutions).

1. (a)
(
11+8−1

11

)
=
(
18
7

)
= 31,824. This is the same as counting bitstrings of length 18

having eleven 1’s (representing the coins) and seven 0’s (as separators between

students).

(b)
(
3+8−1

3

)
=
(
10
3

)
= 120. First give one coin to each student, then hand out the

remaining 3 coins. For this, count bitstrings of length 10 having three 1’s (for the

three remaining coins) and seven 0’s (as separators between the students).

(c) 811 = 8,589,934,592. Here we count all functions from an 11-set (the set of coins)

to an 8-set (the set of students).

(d) As in (c), except this time we only count surjections. There are
{
11
8

}
8! =

479,001,600 functions from the 11-set of coins onto the 8-set of students.

2. Starting with G(x) = (1−x)−1 =
∑∞

n=0, we obtain G′(x) = (1−x)−2 =
∑∞

n=0(n+1)xn

and G′′(x) = 2(1−x)−3 =
∑∞

n=0(n+2)(n+1)xn. It remains only to find the right linear

combination (by solving three equations in three unknowns): S(x) = G′′(x)−3G′(x)+

G(x) = 2(1−x)−3−3(1−x)−2 +(1−x)−1 = (1−x)−3[2−3(1−x)+(1−x)2] = x+x2

(1−x)3 .

3. (a) From f(x) = (1+x)n =
n∑

k=0

(
n
k

)
xk we obtain f ′(x) = n(1+x)n−1 =

n∑
k=0

(
n
k

)
kxk−1.

So f ′(1) =
n∑

k=0

(
n
k

)
k = 2n−1n!.

(b) Continuing from (a), f ′′(x) =n(n−1)(1+x)n−2 =
n∑

k=0

(
n
k

)
k(k−1)xk−2,

so f ′′(1) = 2n−2n(n−1) =
n∑

k=0

(
n
k

)
k(k−1). Adding to the value in (a) gives

f ′(1) + f ′′(1) =
n∑

k=0

(
n
2

)
k2 = 2n−2n(n+1).

(c)
∑n

k=0

(
n
k

)2
=
(
2n
n

)
.

First Proof . Consider a 2n-set A t B where A and B are disjoint sets of size n.

(Here ‘disjoint’ means that A ∩ B = ∅; and in this case it is customary to write

their union A ∪ B as A t B to emphasize that this is a ‘disjoint union’.) Every

n-subset of AtB has the form X tY for some k-subset X ⊆ A and some (n−k)-

subset Y ⊆ B, so the number of n-subsets of A t B is
(
2n
n

)
=
∑n

k=0

(
n
k

)(
n

n−k
)

=∑n
k=0

(
n
k

)2
.



Second Proof . Since (1 + x)2n = (1 + x)n(1 + x)n =
[∑n

k=0

(
n
k

)
xk
][∑n

k=0

(
n
k

)
xk
]
,

we expand the right hand side as a convolution and compare the coefficient of xn

on both sides to obtain the required identity.

4. (a)
(
17
5

)
= 6188. Each path is encoded as a string of length 17 having twelve E’s

and five N’s (interpreted as instructions for when to walk east, and when to walk

north).

(b) Before proceeding with our solution, let’s give an example generalizing the com-

putation of (a): we have

F12,5(x) = 6188x17 + 515508x19 + 24418800x21 + 868346094x23 + 25843633750x25

+ 681061288050x27 + 16434404695800x29 + 371087004526875x31

+ 7957932266924640x33 + 163806440537124000x35 + · · ·

The coefficient of xn in this generating function is wi,j(n), the number of walks

in the grid of length n blocks from (0, 0) to (i, j). Of course every such walk

has length n > 17. Moreover every walk from (0, 0) to (12, 5) has odd length;

that is because the grid gives a bipartite graph. (We may color the vertices (i, j)

either red or blue according as i+j is even or odd. Every block in the grid joins

a red vertex and a blue vertex. For more about this concept, refer to Practice

Problems 2.) It is fairly clear that the coefficients in our generating function grow

at a superpolynomial rate. As we shall see, it is possible to express the coefficient

wi,j(n) as a sum of multinomial coefficients; but as we shall see, it is much more

convenient to read off coefficients of EiN j in a certain expansion obtained from

walk generating functions.

We represent the intersection (i, j) as the monomial EiN j using two in-

determinates E and N , since this is i blocks east and j blocks north of the

main intersection. In order to allow arbitrary integer coordinates (positive, neg-

ative and zero), rather than working in the polynomial ring Z[E,N ], we use

R = Z[E,E−1, N,N−1], the ring of all polynomials in two indeterminates E and

N with arbitrary integer exponents. (In other words, R is the set of all finite

sums of the form
∑

i,j ci,jE
iN j where the coefficients ci,j ∈ Z. Here i, j ∈ Z;

and for elements of R, we allow only finitely many nonzero terms of this form.)

The set of all possible walks of length 1 starting at the origin is represented by

A = E + E−1 + N + N−1 ∈ R. Now An =
∑

i,j∈Z wn(i, j)EiN j ∈ R represents

all the walks of length n starting at the origin, where the sum extends over all

integers i, j (but for each n, there are only finitely many nonzero terms since the

coefficient wn(i, j) is zero when |i|+ |j| > n). Next,



∑
i,j∈Z

Fi,j(x)EiN j =
∑
i,j∈Z

( ∞∑
n=0

wn(i, j)xn
)
EiN j =

∞∑
n=0

(∑
i,j∈Z

wn(i, j)EiN j
)
xn

=

∞∑
n=0

Anxn = (1−Ax)−1.

We may expand the latter expression as a sum of terms of the form wi,j(n)EiN jxn

to obtain the desired coefficients wi,j(n). Alternatively, using the Multinomial

Theorem, we may expand

An = (E + E−1 + N + N−1)n =
∑

r,s,t,u

(
n

r, s, t, u

)
Er−sN t−u

and read off the coefficient of EiN j to obtain any desired coefficient wi,j(n).

(In the latter sum, we take all non-negative integers r, s, t, u adding up to n.)

However, rather than explicitly expanding such a sum, it is usually preferable

to allow Maple (or comparable software) to handle the expansions internally and

display for us the desired coefficients, as I have shown in the example above.

5. The sequence a0, a1, a2, . . . is A000088 in the OEIS. The terms for n = 0, 1, 2, 3, 4, 5

are an = 1, 1, 2, 4, 11, 34:

For each n, we found it helpful to list graphs according to the number of edges, in

increasing order. This way, the list of graphs of order n having e+1 edges makes use

of the list of graphs having e edges. Also it suffices to classify graphs with e 6 n
2

edges, then take their complements for the remaining graphs.

The number of connected graphs is bn = 0, 1, 1, 2, 6, 21 for n = 0, 1, 2, 3, 4, 5. This

can be counted using the list of graphs above. These form the first few terms of the

sequence A000088 in the OEIS, except that OEIS uses b0 = 1 and includes a discussion

(with references) for the competing reasons for choosing b0 = 0 or b0 = 1. The question

of whether the the empty graph is connected depends on which precise definition one



uses. In the question I indicated that a graph is connected iff it has a vertex that is

connected to all other vertices by some path; and by this definition, the empty graph

is not connected, as some authors have noted. And the formula C(x) = lnG(x) (see

#7) requires this interpretation. Indeed, if C(0) = 1 then G(0) = e, which would say

that the total number of empty graphs is e = 2.71728 . . .. In effect the authors who

say that the empty graph is not connected are forced to make exceptions to the rules

to accommodate their choice.

6. The smallest such graph has order 6; here one can take e.g. the graph • • • • •
•

.....................................................................................................................................................
........
........
........
..................................

or its complement. The fact that no graph of order ∈ {2, 3, 4, 5} has such a property

can be seen by glancing through the list of graphs in #1.

7. c0 = 0

c1 = 1
1 = 1

c2 = 2
2 = 1

c3 = 6
2 + 6

6 = 3 + 1 = 4

c4 = 24
2 + 24

6 + 24
8 + 24

2 + 24
4 + 24

24

= 12 + 4 + 3 + 12 + 6 + 1 = 38

c5 = 120
2 + 120

24 + 120
2 + 120

10 + 120
2 + 120

4 + 120
2 + 120

2 + 120
2 + 120

2 + 120
2 + 120

12 + 120
8 + 120

12 + 120
6 + 120

2

+ 120
4 + 120

8 + 120
4 + 120

12 + 120
120

= 60 + 5 + 60 + 12 + 60 + 30 + 60 + 60 + 60 + 60 + 60 + 10 + 15 + 10 + 20 + 60
+ 30 + 15 + 30 + 10 + 1

= 728

We check these values by evaluating the first few terms of the exponential generating

function C(x) = lnG(x) (see accompanying Maple worksheet). From this we see that

the first few terms cn = 0, 1, 1, 4, 38, 728 match our counts exactly.



8. The next three terms in the sequence are 750, 1155, 1705 as we find by completing

the table of differences, and extending by three more rows under the assumption that

∆4an = 3 is constant and ∆5an = 0 where an =
{

n
n−2
}

:

n an=
{

n
n−2
}

∆an ∆2an ∆3an ∆4an ∆5an ∆6an

0 0 0 0 1 3 0 0
1 0 0 1 4 3 0 0
2 0 1 5 7 3 0 0
3 1 6 12 10 3 0 0
4 7 18 22 13 3 0 0
5 25 40 35 16 3 0 0
6 65 75 51 19 3 0 0
7 140 126 70 22 3 0
8 266 196 92 25 3
9 462 288 117 28
10 750 405 145
11 1155 550
12 1705

9. Using Pascal’s relation
(
n+1
k

)
=
(

n
k−1
)

+
(
n
k

)
, we have ∆

(
n
k

)
=
(
n+1
k

)
−
(
n
k

)
=
(

n
k−1
)
.

10. Denoting an =
{

n
n−2
}

, we have an = 1
(
n
3

)
+ 3

(
n
4

)
= 1

24n(n− 1)(n− 2)(3n− 5).

We verify that this polynomial fits the known values of
{

n
n−2
}

exactly for n =

0, 1, 2, . . . , 12.

11. This is essentially Problem #4(c) on HW4, but we have spelled out the steps (see

Solutions to HW4). You should verify that the number of surjections [n] → [n−2] is{
n

n−2
}

(n−2)! = 1
24n(n−1)(n−2)(3n−5)(n−2)! = 1

24 (n−2)(3n−5)n!, in agreement

with our answer there.


