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May 2023

1. (a) How many ways can I give eleven identical coins to eight students?

(b) How many ways can I give eleven identical coins to eight students, if each student

is expected to receive at least one of the coins?

(c) How many ways can I give eleven different coins to eights students?

(d) How many ways can I give eleven different coins to eights students, if each student

is expected to receive at least one of the coins?

2. Let S(x) =
∞∑

n=0
n2xn, the generating function of the sequence of square numbers

0, 1, 4, 9, 16, 25, . . .. Evaluate S(x) as a rational function in simple closed form.

3. Let n be a non-negative integer. Find closed formulas for

(a)
n∑

k=0

(
n
k

)
k (b)

n∑
k=0

(
n
k

)
k2 (c)

n∑
k=0

(
n
k

)2
4. A city has streets running north-south and avenues running east-west, forming a grid

in which all blocks have the same size.

(a) If I am at a particular intersection and I need to walk 12 blocks east and 5 blocks

north using a path of shortest distance possible, I will need to walk 17 blocks.

How many possible routes are there which allow me to reach my destination in

just 17 blocks?

*(b) Mark each intersection by its coordinates (i, j) with respect to the main avenue

as x-axis and the main street as y-axis; for example the intersection (3,−8) is

three blocks north and eight blocks south of intersection (0, 0). Let wn(i, j) be

the number of walks of length n from intersection (0, 0) to intersection (i, j). (A

walk is any route formed by following city blocks, not necessarily distinct blocks.

When counting walks, the order in which the blocks are followed matters.) For

each (i, j), compute the generating function Fi,j(x) =
∑∞

n=0 wn(i, j)xn. Use this

to determine wn(i, j) and give another method for answering (a).

5. Consider the sequence an defined as the number of isomorphism classes of ordinary

graphs (undirected graphs with no loops or multiple edges) of order n. Also define

bn to be the number of isomorphism classes of connected graphs of order n. Tabulate

the values of an and bn for n = 0, 1, 2, 3, 4, 5. (For technical reasons, we should have



a0 = 1 and b0 = 0. To make sense of this, consider the following: A graph is connected

iff it has a vertex which is joined to every vertex by some path.)

6. An automorphism of a graph is an isomorphism from the graph to itself. What is the

smallest nontrivial graph (i.e. having more than one vertex) having no automorphism

other than the trivial one (the identity automorphism mapping each vertex to itself)?

(Again, we only consider ordinary graphs here.)

In #5, we were of course counting unlabelled graphs. The number of labelled graphs

of order n is simply 2(n
2), assuming we use the set [n] = {1, 2, . . . , n} as the set of labels.

Given a labelled graph Γ of order n, the number of labelled graphs (having label set [n])

to which it is isomorphic, is n!
|Aut Γ)| . In other words, given an unlabelled graph Γ of order

n, there are n!
|Aut Γ)| labelled graphs isomorphic to Γ. For example, the triangle • •

•
.......................................

........
........
.............................. has 6

automorphisms, and it corresponds to just 3!
6 = 1 labelled graph; every labelling using the

label set [3] = {1, 2, 3} gives the same labelled graph. The unlabelled graph • • •............................................................. has

2 automorphisms, and it corresponds to 3!
2 = 3 different labelled graphs (there are three

choices for which label to place on the middle vertex). So while there are 2 unlabelled

graphs of order 3 (up to isomorphism), there are altogether 1 + 3 = 4 labelled connected

graphs of order 4.

7. Enumerate the number of labelled connected graphs cn for n = 1, 2, 3, 4, 5. (For

technical reasons, c0 = 0; also c3 = 4 as explained above. This leaves the cases

n = 1, 2, 4, 5 for you to figure out, using your lists of small graphs in #5.)

The exponential generating function for the number of labelled graphs of order n is

G(x) =
∞∑

n=0

2(n
2)x
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Standard counting techniques show that the exponential generating function for cn, the

number of labelled connected graphs (see #7) is

C(x) = lnG(x).

It would be very useful to have explicit formulas for the number of unlabelled graphs an,

also for the number of unlabelled connected graphs bn; however it is very hard to relate

this to cn since unlabelled graphs vary greatly in terms of the size of their automorphism

groups.

Next, we continue the theme of finite differences begun in HW4. Given a sequence

(a0, a1,a2, . . .), its sequence of forward differences is

∆(a0, a1, a2, . . .) = (a1−a0, a2−a1, a3−a2, . . .).

The second order differences form the sequence

∆2(a0, a1, a2, . . .) = ∆(∆(a0, a1, a2, . . .)) = (a2−2a1+a0, a3−2a2+a1, a4−2a3+a2, . . .).



Higher order differences are defined by iterating the map ∆; thus the (n+1)-st order

differences form the sequence ∆k+1(a0, a1, a2, . . .) = ∆(∆k(a0, a1, a2, . . .)). We also write

∆an = an+1−an for term n in the sequence of first-order differences; similarly ∆kan
denotes term n in the sequence of k-th order differences. For example, ∆2an = an+2 −
2an+1 + an and ∆3a5 = a8−3a7+3a6−a5.

Finite differences are a very handy tool for studying sequences. For example, what

is the next term in the sequence 3, 4, 9, 20, 39, 68, 109, . . .? From the data, we generate a

table of values for n, an,∆an,∆
2an,∆

3an, . . . :

n an ∆an ∆2an ∆3an ∆4an ∆5an ∆6an

0 3 1 4 2 0 0 0
1 4 5 6 2 0 0
2 9 11 8 2 0
3 20 19 10 2
4 39 29 12
5 68 41
6 109

In general, there is no reason to assume that this pattern continues throughout the rest of

the table. But if it does, then this allows us to extrapolate the sequence to find additional

terms, as many terms as we like; for example in this case, we obtain

n an ∆an ∆2an ∆3an ∆4an ∆5an ∆6an

0 3 1 4 2 0 0 0
1 4 5 6 2 0 0 0
2 9 11 8 2 0 0 0
3 20 19 10 2 0 0 0
4 39 29 12 2 0 0 0
5 68 41 14 2 0 0 0
6 109 55 16 2 0 0 0
7 164 71 18 2 0 0 0
8 235 89 20 2 0 0 0
9 324 109 22 2 0 0 0

We have extrapolated the sequence to find the next three terms 164, 235, 324, . . . and

we can in fact extrapolate the sequence as far as we want. Of course the validity of this

extrapolation depends on the validity of our assumption that ∆3an = 2, a constant value

for all n; and ∆4an = 0 for all n. In general, if ∆kan is constant and ∆k+1an = 0,

then an is a polynomial in n of degree k, and this method works. We will explain these

conditions below; but you should think of them as the discrete version of the conditions

that dk

dxk f(x) = constant and dk+1

dxk+1 f(x) = 0, these being the conditions for f(x) to be a

polynomial of degree k. For most data, unless it represents values of a polynomial, it is

not possible to extrapolate reliably from a given finite set of values of the sequence.

8. In class we gave the first few rows of Stirling’s Triangle. From there, we can read off

the first few terms of the sequence
{

n
n−2

}
= 0, 0, 0, 1, 7, 25, 65, 140, 266, 462, . . . for n =



0, 1, 2, 3, 4, 5, 6, 7, 8, 9, . . .. Find the next three terms in the sequence by extrapolating,
using a table of finite differences as we have done in the example above.

In the example above, we showed how to extrapolate data given by a polynomial function
evaluated at 0, 1, 2, 3, . . . , m. We did not explain why this works; nor did we explain
how to produce the polynomial defining the data. This is explained in a sequence of steps,
beginning with the following exercise. Recall that

(
n
k

)
= P (n,k)

k! .

9. Fix a non-negative integer k, and consider the sequence
(
n
k

)
with terms

(
0
k

)
,
(

1
k

)
,(

2
k

)
, . . . . Show that ∆

(
n
k

)
=
(

n
k−1

)
.

Now if an is given by a polynomial function of degree k in n, it is just as well given by
a linear combination of the polynomials

(
n
i

)
= P (n,i)

i! for i = 0, 1, 2, . . . , k. (Recall our
earlier discussion that the vector space of polynomials in x has several bases. In addition
to the standard basis formed by the monomials xi, we also have the basis consisting of
polynomials P (x, i); and these can be divided by i! to obtain a new basis consisting of the
binomial coefficients

(
x
i

)
.)

Returning to our example above, we had a sequence defined by a polynomial of degree 3
which may be written as an =

∑3
i=0 ci

(
n
i

)
. By repeatedly taking finite differences, we have

an = c0 + c1n + c2

(
n
2

)
+ c3

(
n
3

)
∆an = c1 + c2n + c3

(
n
2

)
∆2an = c2 + c3n

∆3an = c3

Now evaluating at n = 0 and reading off values of ck = ∆ka0 from our table of finite
differences, we obtain c0=a0=3, c1=∆a0=1, c2=∆2a0=4, c3=∆2a0=2. Thus

an = 3 + n + 4
(
n
2

)
+ 3
(
n
3

)
= 3 + n + 4·n(n−1)

2 + 2·n(n−1)(n−2)
6

= 1
3n

3 + n2 − 1
3n + 3.

This method of fitting a polynomial formula for an from the data is known as Newton
Interpolation.

10. Using your table of differences from #8, use the method of Newton Interpolation
(explained above) to express

{
n

n−2

}
as a polynomial function in n.

11. Use the following combinatorial reasoning to count the number of ways to partition n
distinct objects into n−2 nonempty parts.

(a) How many partitions have one part of size 3 and n−3 parts of size 1?

(b) How many partitions have two parts of size 2 and n−4 parts of size 1?

(c) Add your answers in (a) and (b) and simplify, to express
{

n
n−2

}
as a polynomial

in n. Be sure to compare with your answer in #10.


