

Solutions to HW3

- 1. (a) The girth of Γ is 4. There are no 3-cycles in Γ ; but there exists a pair of vertices x, y at distance 2 with two common neighbors z, w , so there is a 4-cycle $x \sim z \sim$ $y \sim w \sim x$.
	- (b) Fix a vertex, which we label 0. This vertex has k neighbors which we may label $1, 2, \ldots, k$. There are no edges between any two vertices of $V_1 = \{1, 2, \ldots, k\};$ so each $i \in V_1$ has $k-1$ neighbors in V_2 , the set of vertices at distance 2 from vertex 0. Since Γ has diameter 2, its vertex set is $\{0\} \sqcup V_1 \sqcup V_2$ and $n = 1+k+|V_2|$. Again, since each vertex in V_1 has $k-1$ neighbors in V_2 , there are exactly $k(k-1)$ edges between V_1 and V_2 . Also by hypothesis, each vertex in V_2 has 2 neighbors in V_1 , so the number of edges between V_1 and V_2 is $2|V_2|$. Since $2|V_2| = k(k-1)$, we have $|V_2| = k(k-1)/2$ and $n = 1 + k + (k(k-1)/2) = \frac{1}{2}(k^2 + k + 2)$.
	- (c) The entries of A^2 count the walks of length 2 between pairs of vertices of Γ. All entries on the main diagonal of A^2 are k, since Γ is k-regular; this gives kI_n as one term in A^2 . If $x \sim y$, then there are no walks of length 2 from x to y; so the (x, y) -entry of A^2 is zero. If $x \nsim z$, then there are two walks of length 2 from x to z, so the (x, z) -term of A^2 is 2, This gives a final term $2(J-I-A)$ in A^2 ; so

$$
A^2 = kI + 2(J-I-A).
$$

(d) The all-ones vector **j** of size $n \times 1$ satisfies A **j** = k**j**. Now consider any eigenvector **u** orthogonal to **j**, having eigenvalue λ ; then λ^2 **u** = A^2 **u** = k **u** + 2(*J*-*I*-*A*)**u** = $k\mathbf{u} - 2\mathbf{u} - 2\lambda\mathbf{u}$ so

$$
\lambda^2 + 2\lambda - (k-2) = 0.
$$

This gives $\lambda = \frac{1}{2}$ $rac{1}{2}(-2 \pm$ √ $\overline{4k-4}$) = $-1\pm$ √ $\overline{k-1} < k$. This tells us a couple things. First of all, the eigenvalue k (from the eigenvector **j**) has multiplicity 1; and First of an, the eigenvalue κ (from the eigenvector **J**) has multiplicity 1; and κ secondly, the only remaining eigenvalues are $\lambda = -1 + \sqrt{k-1}$ and $\mu = -1 - \sqrt{k-1}$, with certain multiplicities m and $n-m-1$ respectively. Since $tr(A) = 0$, we have the sum of its eigenvalues (counting multiplicity) is also zero, i.e.

$$
k + m\lambda + (n - m - 1)\mu = 0.
$$

As previously noted, the eigenvalue k has multiplicity 1. Since $n = \frac{1}{2}$ $\frac{1}{2}(k^2+k+2),$ As previously noted, the eigenvalue λ has multiplicity 1. Since find that the eigenvalue $\lambda = -1 + \sqrt{k-1}$ has multiplicity

$$
m = \frac{1}{4}k(k+1+\sqrt{k-1}).
$$

This also means that the remaining eigenvalue $\mu = -1 -$ √ $k-1$ has multiplicity

$$
n-m-1 = \frac{1}{4}k(k+1-\sqrt{k-1}).
$$

Note that these formulas require $k-1$ to be a perfect square. Other than the trivial example with $k = 1$, $n = 4$ (a 4-cycle), we have $k = 5$, $n = 16$ which gives the example in (e).

(e) For $k = 5$, we obtain $n = 16$, and Γ has spectrum $k = 5$, with multiplicity 1;

 $\lambda = 1$, with multiplicity 10; and

 $\mu = -3$, with multiplicity 5.

This gives the Clebsch graph, shown on the right.

2. (a) You should be able to check at least the first half of these values by hand; after that probably rely on the recurrence relation or the computer expansion of (c).

- (b) $w_n = 1$ for $n \in \{0, 1, 2\}$ and $w_n = 2w_{n-1} w_{n-2} + 2w_{n-3}$ for $n \in \{3, 4, 5, 6, \ldots\}.$ This follows directly from the denominator in (c). Alternatively, since the graph has only 3 vertices, we know the recurrence ls linear of depth 3, and the first six terms of the sequence in (a) give us a linear system which can be solved uniquely to obtain our linear recurrence. (And a few more terms in the to check that our solution is correct.)
- (c) Using Maple, we find that the $(1, 1)$ -entry of $(I xA)^{-1}$ is

$$
W(x) = \frac{1-x}{1-2x+x^2-2x^3}.
$$

(d) Again using Maple,

$$
W(x) = 1 + x + x2 + 3x3 + 7x4 + 13x5 + 25x6 + 51x7 + 103x8 + 205x9 + 409x10 + 819x11 + 1639x12 + 3277x13 + 6553x14 + 13107x15 + ...
$$

(e) $W(x) = \frac{1-x}{1-2x+x^2-2x^3} = \frac{A}{1-2}$ $\frac{A}{1-2x} + \frac{Bx+C}{1+x^2}$ for certain real constants A, B, C which we must determine. Clearing denominators, we obtain

$$
1 - x = A(1 + x^2) + (Bx + C)(1 - 2x).
$$

Evaluating at $\frac{1}{2}$ and at $\pm i$, we obtain linear equations which we solve to obtain $A = \frac{2}{5}$ $\frac{2}{5}, B=\frac{1}{5}$ $\frac{1}{5}$, $C = \frac{3}{5}$ $\frac{3}{5}$; so

$$
W(x) = \frac{2}{5(1-2x)} + \frac{3+x}{5(1+x^2)}
$$

= $\frac{2}{5}(1+2x+4x^2+8x^3+16x^4+\cdots) + \frac{1}{5}(3+x)(1-x^2+x^4-x^6+\cdots).$

Reading off the coefficient of x^n , $w_n =$ $\int \frac{1}{5} (2^{n+1}+3(-1)^{n/2}),$ if *n* is even; 1 $\frac{1}{5}(2^{n+1}+(-1)^{(n-1)/2}), \text{ if } n \text{ is odd.}$

(f) The dominant term in our expression for w_n gives $w_n \sim \frac{2}{5}$ $\frac{2}{5} \cdot 2^n$. Check by comparison:

