

Solutions to HW3

- (a) The girth of Γ is 4. There are no 3-cycles in Γ; but there exists a pair of vertices x, y at distance 2 with two common neighbors z, w, so there is a 4-cycle x ~ z ~ y ~ w ~ x.
 - (b) Fix a vertex, which we label 0. This vertex has k neighbors which we may label $1, 2, \ldots, k$. There are no edges between any two vertices of $V_1 = \{1, 2, \ldots, k\}$; so each $i \in V_1$ has k-1 neighbors in V_2 , the set of vertices at distance 2 from vertex 0. Since Γ has diameter 2, its vertex set is $\{0\} \sqcup V_1 \sqcup V_2$ and $n = 1+k+|V_2|$. Again, since each vertex in V_1 has k-1 neighbors in V_2 , there are exactly k(k-1) edges between V_1 and V_2 . Also by hypothesis, each vertex in V_2 has 2 neighbors in V_1 , so the number of edges between V_1 and V_2 is $2|V_2|$. Since $2|V_2| = k(k-1)$, we have $|V_2| = k(k-1)/2$ and $n = 1 + k + (k(k-1)/2) = \frac{1}{2}(k^2+k+2)$.
 - (c) The entries of A^2 count the walks of length 2 between pairs of vertices of Γ . All entries on the main diagonal of A^2 are k, since Γ is k-regular; this gives kI_n as one term in A^2 . If $x \sim y$, then there are no walks of length 2 from x to y; so the (x, y)-entry of A^2 is zero. If $x \not\sim z$, then there are two walks of length 2 from x to z, so the (x, z)-term of A^2 is 2. This gives a final term 2(J-I-A) in A^2 ; so

$$A^2 = kI + 2(J - I - A).$$

(d) The all-ones vector \mathbf{j} of size $n \times 1$ satisfies $A\mathbf{j} = k\mathbf{j}$. Now consider any eigenvector \mathbf{u} orthogonal to \mathbf{j} , having eigenvalue λ ; then $\lambda^2 \mathbf{u} = A^2 \mathbf{u} = k\mathbf{u} + 2(J-I-A)\mathbf{u} = k\mathbf{u} - 2\mathbf{u} - 2\lambda\mathbf{u}$ so

$$\lambda^2 + 2\lambda - (k-2) = 0.$$

This gives $\lambda = \frac{1}{2}(-2\pm\sqrt{4k-4}) = -1\pm\sqrt{k-1} < k$. This tells us a couple things. First of all, the eigenvalue k (from the eigenvector **j**) has multiplicity 1; and secondly, the only remaining eigenvalues are $\lambda = -1 + \sqrt{k-1}$ and $\mu = -1 - \sqrt{k-1}$, with certain multiplicities m and n-m-1 respectively. Since $\operatorname{tr}(A) = 0$, we have the sum of its eigenvalues (counting multiplicity) is also zero, i.e.

$$k + m\lambda + (n - m - 1)\mu = 0.$$

As previously noted, the eigenvalue k has multiplicity 1. Since $n = \frac{1}{2}(k^2+k+2)$, we find that the eigenvalue $\lambda = -1 + \sqrt{k-1}$ has multiplicity

$$m = \frac{1}{4}k(k+1+\sqrt{k-1}).$$

This also means that the remaining eigenvalue $\mu = -1 - \sqrt{k-1}$ has multiplicity

$$n-m-1 = \frac{1}{4}k(k+1-\sqrt{k-1}).$$

Note that these formulas require k-1 to be a perfect square. Other than the trivial example with k = 1, n = 4 (a 4-cycle), we have k = 5, n = 16 which gives the example in (e).

(e) For k = 5, we obtain n = 16, and Γ has spectrum k = 5, with multiplicity 1;

 $\lambda = 1$, with multiplicity 10; and

 $\mu = -3$, with multiplicity 5.

This gives the Clebsch graph, shown on the right.

2. (a) You should be able to check at least the first half of these values by hand; after that probably rely on the recurrence relation or the computer expansion of (c).

n	0	1	2	3	4	5	6	7	8	9	10
w_n	1	1	1	3	7	13	25	51	103	205	409

- (b) $w_n = 1$ for $n \in \{0, 1, 2\}$ and $w_n = 2w_{n-1} w_{n-2} + 2w_{n-3}$ for $n \in \{3, 4, 5, 6, \ldots\}$. This follows directly from the denominator in (c). Alternatively, since the graph has only 3 vertices, we know the recurrence ls linear of depth 3, and the first six terms of the sequence in (a) give us a linear system which can be solved uniquely to obtain our linear recurrence. (And a few more terms in the to check that our solution is correct.)
- (c) Using Maple, we find that the (1, 1)-entry of $(I xA)^{-1}$ is

$$W(x) = \frac{1-x}{1-2x+x^2-2x^3}$$

(d) Again using Maple,

$$W(x) = 1 + x + x^{2} + 3x^{3} + 7x^{4} + 13x^{5} + 25x^{6} + 51x^{7} + 103x^{8} + 205x^{9} + 409x^{10} + 819x^{11} + 1639x^{12} + 3277x^{13} + 6553x^{14} + 13107x^{15} + \cdots$$

(e) $W(x) = \frac{1-x}{1-2x+x^2-2x^3} = \frac{A}{1-2x} + \frac{Bx+C}{1+x^2}$ for certain real constants A, B, C which we must determine. Clearing denominators, we obtain

$$1 - x = A(1 + x2) + (Bx + C)(1 - 2x).$$

Evaluating at $\frac{1}{2}$ and at $\pm i$, we obtain linear equations which we solve to obtain $A=\frac{2}{5}, B=\frac{1}{5}, C=\frac{3}{5}$; so

$$W(x) = \frac{2}{5(1-2x)} + \frac{3+x}{5(1+x^2)}$$

= $\frac{2}{5}(1+2x+4x^2+8x^3+16x^4+\cdots) + \frac{1}{5}(3+x)(1-x^2+x^4-x^6+\cdots).$

Reading off the coefficient of x^n , $w_n = \begin{cases} \frac{1}{5} (2^{n+1} + 3(-1)^{n/2}), & \text{if } n \text{ is even;} \\ \frac{1}{5} (2^{n+1} + (-1)^{(n-1)/2}), & \text{if } n \text{ is odd.} \end{cases}$

(f) The dominant term in our expression for w_n gives $w_n \sim \frac{2}{5} \cdot 2^n$. Check by comparison:

n	0	1	2	3	4	5	6	7	8	9	10
w_n	1	1	1	3	7	13	25	51	103	205	409
$\frac{2}{5} \cdot 2^n$	0.4	0.8	1.6	3.2	6.4	12.8	25.6	51.2	102.4	204.8	409.6