
Introduction to Techniques for Counting

‘A generating function is a device somewhat similar to a bag. Instead of carrying many little
objects detachedly, which could be embarrassing, we put them all in a bag, and then we have
only one object to carry, the bag.’

—George Polya, Mathematics and plausible reasoning (1954)

‘A generating function is a clothesline on which we hang up a sequence of numbers for display.’

—Herbert Wilf, generatingfunctionology (1994)

Some days I go to the coffee shop, and other days not. If I never go to the coffee shop

two days in a row, how many choices of schedule are possible for visiting the coffee shop

over a period of n consecutive days? Implicitly, ‘schedule’ here refers to a specification of

which days I went to the coffee shop, and which days not; so each schedule is uniquely

represented by a sequence of 0’s and 1’s indicating the days I did not, or did, go to the

shop, respectively. We translate our original problem into an equivalent one involving

bitstrings, as follows.

A bit (abbreviation for ‘binary digit ’) is defined to be a symbol ‘0’ or ‘1’. (Note that

we consider bits a symbols, to be interpreted literally rather than numerically (so you

should view them as simply letters, not numbers). By a bitstring (or binary string), we

mean a finite sequence of bits. For each n > 0, there are exactly 2n bitstrings of length

n, where the length of a bitstring is defined to be the number of bits in the string. We

include the case n = 0, which yields the null string ‘’ of length zero. Usually we omit the

quotation marks, abbreviating ‘01101’ as 01101 for example; but for the null string, clearly

such abbreviation won’t work. Here we list explicitly all bitstrings of length 6 3:

n bitstrings of length n

0 ‘’

1 0, 1

2 00, 01, 10, 11

3 000, 001, 010, 011,
100, 101, 110, 111

Our problem is to determine the number of bitstrings of length n having no two consecutive

1’s. Let us call such a bitstring a 11-free bitstring, and denote by an the number of 11-free

bitstrings of length n. The following table shows that the first few terms in the sequence

an look remarkably like Fibonacci numbers:

1

n 11-free bitstrings
of length n

an = number of
such bitstrings

bn = no.
ending in ‘1’

cn = no. not
ending in ‘1’

0 ‘’ 1 0 1

1 0, 1 2 1 1

2 00, 01, 10 3 1 2

3 000, 001, 010, 100, 101 5 2 3

4 0000, 0001, 0010, 0100,
1000, 0101, 1001, 1010 8 3 5

For future reference, I have also indicated how many such bitstrings end (or do not end)

in ‘1’: there are bn and cn such bitstrings respectively, so that an = bn + cn. Based on this

limited evidence, we conjecture (i.e. guess) that an−1 = bn+1 = cn is the n-th Fibonacci

number (see Chapter 5 of the textbook). The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, . . . is defined recursively by

Fn =

{
1, if n = 0 or 1;

Fn−1 + Fn−2, if n > 2.

In order to establish the connection, we prove

Theorem. For all n > 0, we have an+2 = an+1 + an.

Proof. Every 11-free bitstring of length n + 1 not ending in ‘1’ (call it w) has the form

w = w′0 where w′ is an arbitrary 11-free bitstring of length n; this says that

cn+1 = an = bn + cn.

Every 11-free bitstring w of length n + 1 ending in ‘1’ has the form w = w′1 where w′ is

necessarily a 11-free bitstring of length n not ending in ‘1’; this says that

bn+1 = cn.

Substituting bn = cn−1 into the previous formula gives cn+1 = cn + cn−1 for n > 1; and

since c0 = c1 = 1, we must have cn = Fn, the nth Fibonacci number. This also yields

an+2 = an+1 + an.

2

We demonstrate how easily Maple
........
......................................
..R generates the first few terms of the sequence using

the recurrence relation an = an−1 + an−2:

Our recursive formula for an clearly provides a way to compute many terms of the

sequence. However, for large values of n, this method requires iterating the recursion

many times, which may prove to be impractical. In some situations it may therefore be

preferable to have a closed formula for an, i.e. one which yields an directly without having

to compute all the preceding terms of the sequence. Although closed formulas are not

available for every counting problem, we will obtain such a formula in this case, thereby

obtaining further insight into the sequence an (including its asymptotic growth rate, which

turns out to be exponential). Our primary tool for this purpose is the generating function

of the sequence a0, a1, a2, . . ., defined (as in Chapter 5 of the textbook) by

F (x) =
∑
n>0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + · · ·

= x+ 2x2 + 3x3 + 5x4 + 8x5 + 13x6 + · · · .

Note that a single expression F (x) carries all the same information as the entire infinite

sequence an. It is important to note that this expression is purely symbolic. Here x is

a symbol, not a number; and F (x) is also purely symbolic. In particular, calling F (x) a

function is a misnomer. We never evaluate F (a) for any number a; and so convergence of

the power series is never an issue. For this reason, none of the analytic properties of power

series learned in Calculus II are needed here; all that we require is the formal (and quite

naive) algebraic manipulation of power series.

3

One of the most important power series is the geometric series

1

1− u
=
∞∑
n=0

un = 1 + u+ u2 + u3 + u4 + · · · .

The identity is verified by cross-multiplying:

(1− u)(1 + u+ u2 + u3 + u4 + · · ·) = 1− u+ u− u2 + u2 − u3 + u3 − · · ·
= 1.

Here, as always, u and the series expansion for 1
1−u , are purely symbolic. (In Calculus II

you would have been taught that the series is only valid when the series converges, i.e. for

|u| < 1; but in our context it is inappropriate to require such a caveat since u is not a

number, and in particular |u| has no meaning.)

To obtain a closed-form expression for F (x), use the identity an+2 = an+1 + an, valid

for all n > 0, thus:

F (x) =
∞∑
n=0

anx
n = 1 + 2x+

∞∑
n=2

anx
n

= 1 + 2x+

∞∑
n=0

(an+1+an)xn+2

= 1 + 2x+ x
∞∑
n=0

an+1x
n+1 + x2

∞∑
n=0

anx
n

= 1 + 2x+ x
∞∑
n=1

anx
n + x2

∞∑
n=0

anx
n

= 1 + 2x+ x(F (x)− 1) + x2F (x).

Thus (1− x− x2)F (x) = 1 + x, i.e.

F (x) =
1 + x

1− x− x2
.

This is a rational function of x, i.e. a quotient of two polynomials. From it we may extract

each term an of the original sequence as the coefficient of xn. We demonstrate how readily

4

this is possible using Maple
........
......................................
..R :

or using Mathematica
........
......................................
..R :

Let us describe several ways to extract the coefficients an from this expression, thereby

answering the counting problem for 11-free bitstrings of a given length. Which of these

approaches is most appropriate depends the tools available (usually computer or hand

computation) and the question we are trying to answer (such as, determining a5? or a100?

or an for general n? Do we require only a recursive formula for an, or a closed formula?

Do we require a simple asymptotic formula for an expressing roughly its rate of growth?)

The following methods are possible:

(i) Start generating terms using the recursive formula for an.

(ii) Compute the n-th derivative F (n)(x) for the first few values of n = 0, 1, 2, 3, . . . and

evaluate at 0 to obtain an = F (n)

n! as in Calculus II.

(iii) Expand the first few terms using a geometric series expansion for the denominator of

F (x).

5

(iii) Obtain a partial fraction decomposition for F (x). Assuming the denominator factors

with distinct roots, each term in the partial fraction decomposition expands as a

geometric series, yielding an exact formula for an; also an asymptotic formula for an.

If the denominator has repeated roots, essentially the same idea works if we use a

more general binomial expansion in place of the geometric series expansion for each

repeated root.

We have already described method (i). Method (ii) is mentioned for completeness, and

because it will be familiar from Calculus II; however it suffers from the technical difficulty

of computing higher order derivatives. To demonstrate method (iii), the first few terms in

our sequence are easily generated by using a series expansion

F (x) = (1+x)
[
1 + (x+x2) + (x+x2)2 + (x+x2)3 + (x+x2)4 + · · ·

]
= (1+x)

[
1 + (x+x2) + (x2+2x3+x4) + (x3+3x4+3x5+x6)

+ (x4+4x5+6x6+4x7+x8) + · · ·
]

= (1+x)
[
1 + x+ 2x2 + 3x3 + 5x4 + · · ·

]
= 1 + 2x+ 3x3 + 5x4 + 8x5 + · · · .

This gives a few terms without any trouble, but no exact general formula for an. Finally,

we demonstrate method (iv). In order to decompose F (x) into two terms with linear

(rather than quadratic) denominators, we first factor the denominator as

1− x− x2 = (1− αx)(1− βx)

where α and β are the reciprocal roots of the quadratic polynomial (i.e. 1
α and 1

β are the

actual roots of 1 − x − x2). In particular for 1
α to be a root, we require 1 − 1

α −
1
α2 = 0

and so α2 − α− 1 = 0, and similarly β2 − β − 1 = 0. Thus

α, β =
1±
√

5

2
.

It doesn’t matter which root has the ‘+’ sign and which has the ‘−’ sign; we might as well

take

α =
1 +
√

5

2
= 1.618 . . . ; β =

1−
√

5

2
= −0.618

For future reference, observe that α − β =
√

5. The decimal approximations for α and β

are not strictly needed here, but they are shown to satisfy our curiosity. Note that α is

the famous irrational number known as the golden ratio. Next, as promised, we split F (x)

into two terms as

F (x) =
1 + x

1− x− x2
=

1 + x

(1− αx)(1− βx)
=

A

1− αx
+

B

1− βx

6

where A and B are constants. This decomposition, known as the partial fraction de-

composition of F (x), is often introduced in Calculus II as a technique for integrating

rational functions. The fact that such constants A,B exist is a result in linear alge-

bra; and while we do not require any knowledge of calculus, we do require you to know

some linear algebra. In particular the constants A and B are found by solving two linear

equations in two unknowns. Start by multiplying both sides of our formula for F (x) by

1− x− x2 = (1− αx)(1− βx) and cancelling factors where possible to obtain

1 + x = (1− x− x2)F (x) = (1− αx)(1− βx)F (x) = (1− βx)A+ (1− αx)B.

This is an identity of polynomials. Evaluating at x = 1
α (so that the last term vanishes)

yields

α = 1 + 1
α =

(
1− β

α

)
A = α−β

α A =
√
5
α A ,

so that A = α2
√
5
; and evaluating similarly at x = 1

β yields

β = 1 + 1
β =

(
1− α

β

)
B = β−α

β B = −
√
5
β B

so that B = − β2

√
5
. This gives the partial fraction decomposition

F (x) =
1 + x

1− x− x2
=

1√
5

(α2

1− αx
− β2

1− βx

)
.

Using our geometric series expansion, we obtain

F (x) = α2
√
5

(
1 + αx+ α2x2 + α3x3 + · · ·

)
− β2

√
5

(
1 + βx+ β2x2 + β3x3 + · · ·

)
=
∑
n>0

αn+2−βn+2

√
5

xn.

Our closed form expression for the n-th Fibonacci number is obtained by simply reading

off the coefficient of xn:

an =
αn+2 − βn+2

√
5

.

Note that for large values of n, the value of βn tends to zero since |β| < 1. A consequence

of this is that

an ≈
αn+2

√
5

;

in fact we may obtain an from αn+2
√
5

by simply rounding off to the nearest integer. A

consequence of this formula is the fact that an grows at an exponential rate, with the

7

golden ratio α as the base of the exponential function. We demonstrate the use of the

closed formula for an using Maple
........
......................................
..R :

Finally, we demonstrate an alternative derivation of the generating function F (x) which

does not begin with a proof of the recurrence formula as we have done. By this alternative

method, the generating function (and implicitly, the recurrence formula, which depends

only on the denominator of F (x)) pop out automatically! We conceive of a machine with

two states (labelled states 1 and 2), as shown:

The machine begins in state 1; and at each time step, the state transitions by following one

of the arrows, also printing out a bit as indicated by the chosen arrow. After n time steps,

the machine will have printed an arbitrary 11-free bitstring of length n. So the number of

11-free bitstrings of length n is the number of possible computational paths our machine

can take in n steps. If we view the diagram as a graph on 2 vertices, then an is the number of

walks of length n starting at vertex 1. This is a directed graph with a loop. The adjacency

matrix A =
[
1
1

1
0

]
has as its (i, j)-entry the number of directed edges from vertex i to

vertex j. The number of walks of length n from vertex i to vertex j is the (i, j)-entry of An.

8

Since the characteristic polynomial of A is x2− x− 1 = (x−α)(x− β), its eigenvalues are

α and β. The corresponding eigenvectors are the columns of M =
[
α
1
β
1

]
, i.e. AM = MD

where D =
[
α
0

0
β

]
. We solve to obtain A = MDM−1 where M−1 = 1√

5

[
1
−1
−β
α

]
; so

An = (MDM−1)n = MDnM−1 =
1√
5

[
α β
1 1

] [
αn 0
0 βn

] [
1 −β
−1 α

]
=

1√
5

[
αn+1−βn+1 αβn+1−αn+1β
αn−βn αβn−αnβ

]
.

To obtain the number of walks of length n starting at vertex 1 (and ending at either vertex

1 or 2), we must add the (1, 1)- and (1, 2)-entries of An. Thus

an = 1√
5

[
(αn+1−βn+1) + (αβn+1−αn+1β)

]
= 1√

5

[
αn+1(1−β)− βn+1(1−α)

]
= 1√

5

(
αn+2 − βn+2

)
since α+ β = 1. This of course agrees with the closed formula we had before. In order to

obtain the generating function directly (and without factoring its denominator), note that

the number of walks of length n from vertex i to vertex j is the (i, j)-entry of

(I −Ax)−1 = I +Ax+A2x2 +A3x3 + · · · .

However,

(I −Ax)−1 =

[
1−x −x
−x 1

]−1
=

1

1− x− x2

[
1 x
x 1−x

]
,

so adding the (1, 1)- and (1, 2)-entries gives

F (x) =
1 + x

1− x− x2

as the generating function for an.

9

