

Final Examination

May, 2023

Instructions. The only aids allowed are a hand-held calculator and one 'cheat sheet', i.e. an $8.5'' \times 11''$ sheet with information written on one side in your own handwriting. No cell phones are permitted (in particular, a cell phone may not be used as a calculator). Graphs are assumed to be finite and simple (undirected, with no loops or multiple edges) unless clearly specified otherwise. Answer as clearly and precisely as possible. *Clarity is required for full credit!* Total value: 100 points (plus 17 bonus points). Time permitted: 120 minutes.

Integer-valued answers having more than a few decimal digits (and which your calculator does not handle) may be expressed using standard notation for factorials n! and falling factorials P(n,k), binomial and multinomial coefficients, Bell numbers B_n , Stirling numbers of the second kind $\binom{n}{k}$, partition numbers p(n) and $p_k(n)$, etc.

- (16 points) Access to a certain website requires a valid password, defined as a string of characters chosen from an alphabet of 42 symbols: the 26 lower case Roman letters (a,b,c,...,z), the 10 digits (0,1,2,...,9) and 6 special symbols (@,\$,%,#,&,*).
 - (a) How many passwords of length 8 are there using only letters? (e.g. zildjian is allowed but korgms20 is not).
 - (b) How many passwords of length 8 are there using at least one letter and at least one special symbol (and any number of digits)? (e.g. 84ib@nez is allowed but 84ibanez is not).
 - (c) How many passwords of length 8 are there using no character more than once? (e.g. rickenba is allowed but fender#3 is not).
 - (d) How many passwords of length 8 are there having no two *consecutive* characters the same? (e.g. yamaha08 is allowed but collings is not).

- 2. (21 points) Let S be the set of all ordinary graphs of order 10 (hence undirected graphs with no loops or multiple edges). The graphs in S are unlabelled (so we have just one graph of each isomorphism type with 10 vertices). It is known that |S| = 12,005,168 (a much smaller number than 2^{45} , the number of labelled graphs with vertex set [10]).
 - (a) Among all graphs $\Gamma \in S$, what is the maximum possible number of automorphisms of Γ ?
 - (b) Among all graphs $\Gamma \in S$ which are *bipartite*, what is the maximum possible number of edges of Γ ?
 - (c) Among all graphs $\Gamma \in S$ which have girth at least 4, what is the maximum possible number of edges of Γ ?
 - (d) Among all graphs $\Gamma \in S$ which have girth at least 5, what is the maximum possible number of edges of Γ ?
 - (e) How many of the graphs in S are regular of degree 1?
 - (f) How many of the graphs in S are regular of degree 2?
 - (g) How many of the graphs in S are regular of degree 7?

- 3. (15 points) I want to partition a supply of coins into envelopes (without any empty envelopes).
 - (a) How many ways can I put 12 *identical* coins into *identical* unmarked envelopes?

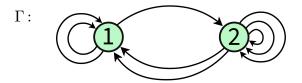
(b) How many ways can I put 12 *different* coins into *identical* unmarked envelopes?

(c) How many ways can I put 12 *different* coins into *five identical* unmarked envelopes?

(d) How many ways can I put 12 *identical* coins into *five different* envelopes, marked 'A', 'B', 'C', 'D', 'E'? (and no envelopes empty)

(e) How many ways can I put 12 *different* coins into *five different* envelopes, marked 'A', 'B', 'C', 'D', 'E'? (and no envelopes empty)

4. (20 points) Consider the directed graph Γ with loops and multiple edges, having vertex set $[2] = \{1, 2\}$ and adjacency matrix $A = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$, as shown.



Denote by $w_n = w_n(1, 2)$ the number of walks of length *n* from vertex 1 to vertex 2. The correct answers to the following are all very simple; if your answers are terribly complicated, please check your work.

(a) Tabulate w_n for n = 0, 1, 2, 3.

n	0	1	2	3
w_n				

(b) Give a linear recursive formula of depth 2 for w_n .

(c) Find the generating function W(x) for the sequence w_n . Your answer should be expressed as a rational function (of course in simplified form).

(d) Find the partial fraction decomposition of W(x).

(e) Expand (d) as a power series in x, and read off the exact value of w_n from the coefficients in this series.

(f) Show that w_n satisfies an asymptotic formula $w_n \sim A\alpha^n$ where A, α are explicit constants.

- 5. (15 points) Give explicit answers (not just symbolic expressions) for each of the following. (The largest answer is a 4-digit number.)
 - (a) How many 9-letter words can be formed from the word SENSELESS by permuting its letters? (We count all words, i.e. strings of letters, not just English words.)

(b) How many ways can 9 individual students be divided into four groups of size 4, 3, 1, and 1? (The order of the groups does not matter.)

(c) How many automorphisms does the graph **i i i i** have?

(d) Recall that there are 5 ways to divide a regular pentagon into three triangles using two chords (line segments joining vertices of the pentagon). How many ways can a regular 10-gon be divided into eight triangles using seven chords?

(e) How many ways can the vertices of the graph ______ be properly colored using the three colors red, blue, green? (Recall: A proper vertex coloring is one in which no two adjacent vertices have the same color.)

- 6. (30 points) Answer True or False to each of the following statements.
 - (a) The number of permutations of [n] grows faster than $A\alpha^n$ as $n \to \infty$, for any real constants A and α . (*True/False*)
 - (b) The number of surjections $[2n] \to [n]$ grows faster than the number of injections $[n] \to [2n]$ as $n \to \infty$. (*True/False*)
 - (c) A random graph on n vertices (in which pairs of vertices are joined or not, depending on the outcomes of independent random coin flips) is almost always connected as $n \to \infty$. (*True/False*)
 - (d) If a sequence a_0, a_1, a_2, \ldots satisfies a linear recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_r a_{n-r}$ for some constants c_1, \ldots, c_r , then the generating function $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots$ is a rational function of x. (True/False)
 - (e) If a sequence a_0, a_1, a_2, \ldots satisfies a linear recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_r a_{n-r}$ for some constants c_1, \ldots, c_r , then the sequence grows at a polynomial rate. (*True/False*)
 - (f) The partition function p(n) has the property that its generating function $\sum_{n=0}^{\infty} p(n)x^n$ is a rational function of x. _____(True/False)
 - (g) If Γ is any graph and $\overline{\Gamma}$ is its complement, then Γ and $\overline{\Gamma}$ have the same group of automorphisms. (*True/False*)
 - (h) There are infinitely many finite graphs (up to isomorphism) having no 10-clique and no 10-coclique. (*True/False*)
 - (i) If A is the adjacency matrix of a k-regular graph Γ of order n, then there exists a nonzero vector $\mathbf{v} \in \mathbb{R}^n$ such that $A\mathbf{v} = k\mathbf{v}$. (*True/False*)
 - (j) If A is the adjacency matrix of a finite ordinary graph Γ , then all roots of the characteristic polynomial of A are real. (*True/False*)