
Moore Graphs

In this handout, all graphs are finite and undirected, with no loops or multiple edges.

We rely extensively on background in linear algebra (a prerequisite for our course), so

pleae review that material before reading ahead. Our course website has links to suitable

handouts which cover the material from linear algebra that we require.

A Moore graph is a k-regular graph of order n, having diameter 2 and girth 5.

(Actually, there is a more general notion of a Moore graph which includes graphs of higher

diameter; here we consider exclusively the case of diameter 2.) Students in our course

have seen two examples of Moore graphs: the 5-cycle and the Petersen graph. As we shall

see, Moore graphs are rare, but there is at least one more which we will reveal later. To

study Moore graphs, and to search for the missing examples, requires some background

from two areas: linear algebra, and graph theory. We start with the required linear algebra

background. While the Spectral Theorem is not necessarily covered in a first undergraduate

course in linear algebra, I am providing the necessary additional background here.

The Spectral Theorem for Real Symmetric Matrices

Let A be a real symmetric n× n matrix. Then A has n real eigenvalues λ1 > λ2 > · · · >
λn and a corresponding orthonormal basis of eigenvectors u1,u2, . . . ,un. In particular,

{u1, . . . ,un} is a basis of Rn. The orthonormal property says that the dot product uT
i uj =

1 or 0 according as i = j or i 6= j. (Here we have represented Rn as the set of n × 1

column vectors with real entries.) There is a more general version of the Spectral Theorem

for all normal matrices, including all unitary complex matrices; but here we care only

about the case of real symmetric matrices (AT = A with real entries). The eigenvector

condition says, moreover, that Aui = λiui for each i ∈ {1, 2, . . . , n}. If we let D be the

diagonal matrix with diagonal entries λ1, λ2, . . . , λn, then U−1AU = D, i.e. A is similar

to the diagonal matrix D. Here U is the n × n matrix with columns u1, . . . ,un; and

we say that U diagonalizes A. Since A is similar to D, its characteristic polynomial is

det(xI−A) = det(xI−D) =
∏n

i=1(x−λi). Note that A and D have the same characteristic

polynomial, the same eigenvalues, the same determinant, and the same trace (read on. . . ).

The trace of a square matrix is the sum of its entries on the main diagonal. If A is

an m× n matrix and B is an n×m matrix, then AB is an m×m matrix, while BA is an

n× n matrix. However, both of these matrices have the same trace. Indeed, denoting the

trace of a matrix by Tr(·), and denoting the entries of A and B by aij and bji, we have
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Tr(AB) =
m∑
i=1

(
(i, i)-entry of AB

)
=

m∑
i=1

( n∑
j=1

aijbji
)

=
n∑

j=1

( m∑
i=1

bjiaij
)

=
n∑

j=1

(
(j, j)-entry of BA

)
= Tr(BA).

Now assuming U−1AU = D as asserted by the Spectral Theorem, we have
n∑

j=1

λj = TrD = Tr(U−1AU) = Tr(AUU−1) = Tr(AI) = TrA

as we have claimed above. This identity will be significant in our study of Moore graphs.

Here are some further explanations which underlie the understanding of the Spectral

Theorem, and justifications for its conclusion. We are given a real symmetric matrix A,

with characteristic polynomial f(x) = det(xI − A), a monic real polynomial of degree n.

By the Fundamental Theorem of Algebra, we know that f(x) factors into n linear factors

x−λi with λi ∈ C. What is not so clear, a priori, is that each λi ∈ R. Let’s explain why all

the eigenvalues of A are in fact real. Let’s abbreviate λ = λi and u = ui, so that Au = λu.

For any complex matrix matrix X, we denote by X∗ the conjugate transpose of X (also

called the Hermitian conjugate of X), i.e. X∗ = X
T

= XT . By conjugating both sides of

the well-known identity (XY )T = Y TXT , we obtain (XY )∗ = Y ∗X∗. Also (X∗)∗ = X. For

any column vector v = (a1, a2, . . . , an)T ∈ Cn, we have v∗v =
∑n

i=1 aiai =
∑

i=1 |ai|2 ∈
[0,∞) (a non-negative real number). Of course A∗ = AT = A since A is real symmetric.

This yields

λ|u|2 = u∗(λu) = u∗Au = u∗A∗u = (Au)∗u = (λu)∗u = λu∗u = λ|u|2.

Since u is a nonzero vector, |u|2 is a positive real number. Thus λ = λ, i.e. λ is real.

How is it that Rn has an orthonormal basis consisting of eigenvectors of A (at least in

the case A is real symmetric)? First of all, one must realize that eigenvectors corresponding

to distinct eigenvalues are necessarily orthogonal; that is, if λi 6= λj , then the corresponding

eigenvectors must satisfy u∗iuj = 0. This follows from

λiu
∗
iuj = (λiui)

∗uj = (Aui)
∗uj = u∗iA

∗uj = u∗i (Auj) = u∗i (λjuj) = λju
∗
iuj .

Next, one uses Gram-Schmidt to obtain orthonormal bases for the eigenspaces of each of

the distinct eigenvalues. We leave the details to your linear algebra textbook.

The Adjacency Matrix of a Graph

Let Γ be a labelled graph with vertices 1, 2, 3, . . . , n. The adjacency matrix of Γ is the

n × n matrix whose (i, j)-entry is the number of edges from vertex i to vertex j. (In the

case of ordinary graphs, A is a symmetric matrix with entries in {0, 1}, and zeroes on its

main diagonal. But here I have defined the adjacency matrix more generally.)
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Let I = In be the n×n identity matrix (the n×n matrix with 1’s on its main diagonal,

and 0’s everywhere else). Let j = jn be the n×1 column vector, all of whose entries are 1’s.

Note that Γ is k-regular iff Aj = kj, iff A has j as an eigenvector with eigenvalue k. An

elementary argument (with or without using induction on m) shows that for all m > 0,

the (i, j)-entry of Am is the number of walks of length m from vertex i to vertex j in A.

Note that this result holds for all m > 0, including 0 and 1 (since A0 = I and A1 = A).

Moreover, the result holds for all finite graphs, including possibly directed graphs, graphs

with multiple edges, and graphs with loops.

Application to Moore Graphs

Now let Γ be a Moore graph of order n, so Γ is k-regular of diameter 2 and girth 5.

Evidently k > 2. Pick any vertex of Γ, which we may label as 0. We choose to label

the k neighbors of 0 as 1, 2, 3, . . . , k. By the girth condition, Γ contains no triangles or

4-cycles; in particular the vertices 1, 2, . . . , k form a k-coclique. For each i ∈ {1, 2, . . . , k},
let Vi be the set of neighbors of vertex i (other than vertex 0), so that |Vi| = k−1. Since

Γ has no 4-cycles, the sets V1, V2, . . . , Vk are mutually disjoint (i.e. Vi ∩ Vj = ∅ whenever

1 6 i < j 6 k). Since Γ has diameter 2, the set {0, 1, 2, . . . , k}tV1 tV2 t · · · tVk contains

all vertices of Γ, so n = 1 + k + k(k − 1) = k2 + 1. Here is what Γ looks like, both in the

general case k > 3, and the special case k = 3:

General case k > 3 Special case k = 3

Since Γ has no triangles, each Vi is a coclique. So each vertex x ∈ Vi is joined to k−1

vertices in the other Vj ’s (j 6= i). And for all i 6= j, each vertex x ∈ Vi is joined to

only one vertex in Vj (again, in order to avoid 4-cycles in Γ. This means that the edges

between Vi and Vj form a matching (each vertex of Vi is joined to exactly one vertex of

Vj). Altogether, the number of edges in Γ is

e = k + k(k − 1) +
k(k − 1)2

2
=

(k2 + 1)k

2
=
nk

2

as required by the formula nk = 2e.

We now show that
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(∗) A2 = kI + (J−I−A).

The (i, j)-entry on the left side of (∗) is the number of walks of length 2 from vertex i to

vertex j. If i = j, this number is k since A is k-regular. This agrees with the right side,

where we find all k’s on the main diagonal. If vertices i and j are adjacent, there are no

walks of length 2 from vertex i to vertex j, since Γ has no triangles; thus the left side

has (i, j)-entry equal to zero. This agrees with the right hand side, since J−I−A is the

adjacency matrix of the complementary graph Γ. Finally, suppose vertices i and j are not

adjacent in Γ. Then the (i, j)-entry of A2 is 1, since there is a unique walk of length 2 from

vertex i to vertex j. (There is at least one such walk, since Γ has diameter 2; and there

cannot be more than one such walk, since Γ has no triangles or 4-cycles.) This proves (∗).
Now let λ1 > · · · > λn be the eigenvalues of A. Since Aj = kj, one of these eigenvalues

is k, with corresponding eigenvector j (which we may normalize to 1√
n
j). All the remaining

eigenvectors ui are orthogonal to j, i.e. j∗ui = 0. And the remaining eigenvalues must

satisfy λi < k. This follows from Jui = 0, since

λ2iui = A2ui = kui + (J−I−A)ui = (k−1−λi)ui,

whence λi = k−1−λ2i < k. So in fact the maximum eigenvalue is λ1 = k and it has

multiplicity 1. (It is more generally true that for every k-regular graph, the maximum

eigenvalue is k; and if the graph is connected, then its multiplicity is 1, and all remaining

eigenvalues satisfy |λi| < k. All this is known from the Perron-Frobenius Theorem.)

Thus λ1 = k > λ2 > λ3 > · · · > λn where the remaining eigenvalues λi (for i =

2, 3, . . . , n) all satisfy λ2i + λi = k−1. This quadratic equation has only two roots,

λ = 1
2

(
−1 +

√
4k−3

)
and µ = 1

2

(
−1−

√
4k−3

)
.

Let m be the multiplicity of the eigenvalue λ, so that µ has multiplicity n−m−1. Since

the diagonal entries of A are zero, the trace of A is zero; so its diagonal form D also has

trace zero. This says that the sum of the eigenvalues is zero:

0 = k +mλ+ (n−m−1)µ.

Using n = k2 + 1 and the formulas for λ, µ above, this becomes

(†) (2m− k2)
√

4k−3 = k(k − 2) .

In the case of the 5-cycle (k = 2, n = 5) we obtain m = 2, and the eigvenvalues λ, µ =
1
2

(
−1±

√
5
)

each have multiplicity 2. However when k > 2, the preceding equation asserts

that the value of
√

4k−3 is rational. This requires that 4k−3 = d2 for some positive integer

d, and so (†) becomes

(d4 + d3 + 6d2 − 2d+ 9− 32m)d = 15.
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There are only four possible values for a positive integer dividing 15, and we cannot allow

d = 1 (since k > 1), so d ∈ {3, 5, 15}. This gives k ∈ {3, 7, 57}. The four possibilities for

the parameter sets of Moore graphs are summarized in the following table.

k n λ µ Γ |Aut Γ|

2 5 1
2

(
−1+

√
5
)

(2×) 1
2

(
−1−

√
5
)

(2×) 5-cycle 10

3 10 1 (5×) −2 (4×) Petersen graph 120

7 50 2 (28×) −3 (21×) Hoffman-Singleton graph 252,000

57 3250 7 (1729×) −8 (1520×) ?? 6 375

k = 2
n = 5

5-cycle

k = 3
n = 10

Petersen

k = 7 Hoffman-
n = 50 Singleton

It is known that there is a unique Moore graph of each degree k ∈ {2, 3, 7}. The existence

(and uniqueness) of the Moore graph of degreee 57 remains an open question to this day,

although it is known that if the 57-regular Moore graph exists, it cannot have more than

375 automorphisms. In 2020, a manuscript was posted on the arXiv claiming to prove

nonexistence of this graph, but the validity of this work has never been verified by the

mathematical community.
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