

Solutions to the Test

1. The set of all legal moves of the puzzle is the subgroup $G = \langle \sigma, \tau \rangle \leq S_{19}$ where $\sigma = (1, 2, 3, \dots, 9)$ and $\tau = (9, 10, 11, \dots, 19)$. Since the generators of G consist of a 9-cycle and an 11-cycle, $G \leq A_{19}$. The altered position of the puzzle is obtained by applying the permutation $\pi = (1, 4, 11, 16, 9, 12, 3, 15)(2, 14, 10, 8, 18, 7)(5, 17, 19, 6)$, a product of cycles of length 8, 6 and 4. Since π is an odd permutation, $\pi \notin G$: it is not a legal move.

Remark: It may be shown that in fact $G = A_{19}$.

- 2. (a) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ represents a clockwise 90° rotation about the origin.
 - (b) $\left\langle \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\rangle$ represents the group generated by the reflections in the two coordinate axes (e.g. the symmetry group of a rectangle).
 - (c) $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ are two examples of elements of infinite order (although almost every element of *G* has infinite order).
 - (d) A concrete example is $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \in Z(G)$. Any scalar matrix λI with $\lambda \notin \{0, 1\}$ is a valid example.
- 3. (a) $|S_6| = 6! = 720.$
 - (b) S_6 has exactly 144 elements of order 5. They all have the cycle structure (i, j, k, ℓ, m) where $\{i, j, k, \ell, m\}$ is a 5-subset of [6]. There are $\binom{6}{5} = 6$ choices of the 5-subset; and if we denote by $i \in [6]$ the smallest label in this 5-subset, the remaining 4 labels j, k, ℓ, m can be listed in any of 4! = 24 ways. Altogether this gives $6 \cdot 24 = 144$ elements of order 5.
 - (c) S_6 has 240 elements of order 6. There are 5! = 120 six-cycles; and there are $2\binom{6}{3}\binom{3}{2} = 120$ elements with cycle structure $(i, j, k)(\ell, m)$.
- 4. (a) The subgroup H consisting of matrices of the form $\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$ is isomorphic to the additive group \mathbb{R} . An isomorphism $\phi : \mathbb{R} \to H$ is given simply by $b \mapsto \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$: this map is bijective, and it satisfies $\phi(b+b') = \phi(b)\phi(b')$.
 - (b) The subgroup K consisting of matrices of the form $\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$ (with $a \neq 0$) is isomorphic to the multiplicative group \mathbb{R}^{\times} . An isomorphism $\phi : \mathbb{R}^{\times} \to K$ is given simply by $a \mapsto \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$: this map is bijective, and it satisfies $\phi(aa') = \phi(a)\phi(a')$.
- 5. (a) (13)(12) = (123). This will be used in (c).

- (b) (14)(13)(12) = (1234). This will be used in (d).
- (c) $\phi((123)) = \phi((13))\phi((12)) = (16)(24)(35)(12)(36)(45) = (143)(265).$
- (d) $\phi((1234)) = \phi((14))\phi((13))\phi((12)) = (13)(25)(46)(16)(24)(35)(12)(36)(45)) = (1624).$

Here are some remarks and partial explanations for answers in #6:

- (a) Since $xy, y^{-1} \in \langle x, y \rangle$, we have $\langle xy, y^{-1} \rangle \leq \langle x, y \rangle$. Conversely, both of the elements $x = (xy)(y^{-1})$ and $y = (y^{-1})^{-1}$ are in $\langle xy, y^{-1} \rangle$, so $\langle x, y \rangle \leq \langle xy, y^{-1} \rangle$.
- (b) A simple counterexample is x = (12) and y = (13) in S_3 . There are also easy counterexamples when the group is abelian; e.g. x = y = (12) in S_2 .
- (c) If x and y commute, then $\langle x, y \rangle = \{x^i y^j : i, j \in \mathbb{Z}\}$ and $(x^i y^j)(x^k y^\ell) = x^{i+k}y^{j+\ell} = (x^k y^\ell)(x^i y^j).$
- (d) If $(xy)^n = e$, then left-multiply by x^{-1} and right-multiply by x to obtain $(yx)^n = e$.
- (e) Consider the multiplicative group of all complex roots of unity (elements of finite order in C[×]).
- (f) Absolutely not. The symmetry group of a square is a set of transformations. It is not at all the same as the set of things that are being permuted or transformed.
- (g) This was proved in class, early in the semester.
- (h) Refer to our survey of groups of small order, given in class.
- (i) The group S_6 is easily identified as a subgroup of S_7 by extending each $\sigma \in S_6$ to [7] in the trivial way: $\sigma(7) = 7$. (In other wise, identify S_6 as the stabilizer of 7 in S_7 .)
- (j) Every cyclic group is countable. Also note that the subgroup generated by a nonzero real number $a \in \mathbb{R}$ is $\langle a \rangle = \{na : n \in \mathbb{Z}\}$, which does not contain a/2, or πa .