
Solutions to the Final Examination
December, 2023

As usual, I have added remarks and tried to give two or three different solutions whenever reasonable. This,

however, makes the solutions appear much longer...

1. (a) σ has 2
(

6
3

)
= 40 conjugates in G. For the first 3-cycle (i, j, k), choose {i, j, k} in(

6
3

)
= 20 possible ways; then multiply by 2 to get 40 different 3-cycles (i, j, k).

There are the same number of permutations having cycle structure (i, j, k)(`,m, n)

in G. (Given the first 3-cycle (i, j, k), the remaining three points `,m, n can be

cycled in either of two directions, giving (i, j, k)(`,m, n) and (i, j, k)(`, n,m) with

the desired cycle structure; and this gives 40 · 2 = 80. But then divide by 2 again

to avoid overcounting, because (i, j, k)(`,m, n) = (`,m, n)(i, j, k): either of the

two 3-cycles might have been chosen as the ‘first’ 3-cycle.)

It may be easier to answer (b) first, and then to use the formula for the

number of conjugates: [G : CG(σ)] = 720
18 = 40.

A third explanation for the number 40 is that it is exactly the same as the

number of 3-cycles in G, which is also 2
(

6
3

)
= 40. As explained in class, G has two

conjugacy classes of elements of order 3; and these two conjugacy classes have

the same size, due the outer automorphism (shown on the Test) which takes one

conjugacy class to the other.

(b) CG(σ) = 〈(123), (14)(25)(36)〉 of order 18. This subgroup cyclically permutes

1, 2, 3 in any of three ways; also cyclically permuting 4, 5, 6 in any of three ways;

and also possibly switching the first three points 1,2,3 with the last three points

4,5,6. This gives a total of 3 · 3 · 2 = 18 permutations. Written out explicitly, the

elements of CG(σ) are

() (123) (132) (14)(25)(36) (142536) (143625)

(456) (123)(456) (132)(456) (152634) (153426) (15)(26)(34)

(465) (123)(465) (132)(465) (163524) (16)(24)(35) (162435)

where the first three columns list the elements of the elementary abelian 3-

subgroup 〈(123), (456)〉 of order 9; and the rightmost three columns give its coset

after multiplying by (14)(25)(36).

This subgroup is nonabelian; the two generators given above do not commute.

Certainly it is not cyclic, since an elementary consideration of possible cycle

structures in S6 shows that this group has no elements of order 18.

(c) Any of the three involutions highlighted in blue above have the required property.

2. Note that φ(g) = (gT )−1 = (g−1)T . This is because transposing gg−1 = g−1g = I

gives (g−1)T gT = gT (g−1)T = I. Mathematicians often simply denote g 7→ g−T for

this inverse-transpose map.



(a) Since φ(gh) = ((gh)T )−1 = (hTgT )−1 = (gT )−1(hT )−1 = φ(g)φ(h) for all g, h ∈
G. Moreover, φ is bijective since it has an inverse function, namely φ−1 = φ.

(b) No, in general φ is not inner. Every inner automorphism of G preserves de-

terminant since det(wgw−1) = det g for all g, w ∈ G. However, detφ(g) =

(det(gT ))−1 = (det g)−1 for all g ∈ G. For n > 1, we may take g ∈ G with deter-

minant not equal to ±1; then there is no inner automorphism taking g to φ(g).

(c) For g ∈ SL2(R), we have g =
[
a
c
b
d

]
for some a, b, c, d ∈ R, ad − bc = 1. In

order for w to conjugate g to g−1 =
[
d
−c
−b
a

]
, we must have wgw−1 = g−1, i.e.

wg = g−1w. This gives four linear equations for the four unknown entries of w;

also we require detw = 1. This system has a solution w =
[

0
−1

1
0

]
. (The solution

is not unique: −w is also a solution.)

Remark : For n > 3, the inverse-transpose map is an outer automorphism

of SLn(R), an interesting fact with an elementary proof which however requires

a little more thought to see.

3. (a) This shows that σ = (143678)(25) is a symmetry of order |σ| = 6 of the cube

satisfying the given conditions:
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(b) By comparing σ = (143678)(25) with σ−1 = (187634)(25), we see that τ =

(37)(48) ∈ G conjugates σ to σ−1. Indeed τ ∈ G, since it represents a reflection

in the plane containing vertices 1,2,5,6. (This answer is not unique; multiplying

τ by any power of σ gives other possible answers.)

(c) σ reverses orientation. For example, the edges 12, 14, 18 cycle counter-clockwise

about the common vertex 1, when viewed from outside the original cube; but

they cycle clockwise on the image cube.

(d) CG(σ) = 〈σ〉 is cyclic of order 6. There are several ways to see this. Let H =

CG(σ). Since 〈σ〉 6 H, it suffices to show that |H| = 6. Because of the action

of σ ∈ H, the H-orbit of vertex 1 satisfies OH(1) ⊇ {1, 4, 3, 6, 7, 8}. But equality

must hold, by our understanding of cycle structures of conjugates. (If h ∈ H,

then h must conjugate σ to σ, so it must map the 6-cycle of σ to itself.) So

|OH(1)| = 6 = [H : H1] where H1 = StabH(1). If h ∈ H1, then 1 = h(1) =

hσ(8) = σh(8) so h(8) = σ−1(1) = 8. Similarly h fixes 7,6,3,4. This forces h = ().

So |H| = [H : H1]|H1| = 6 · 1 = 6.



Alternatively, the conjugacy class of σ in G has size [G : CG(σ)] = 48
|CG(σ)| ,

so it suffices to see that σ has exactly 8 conjugates in G. There are four pairs

of antipodal vertices of the cube (such as {2, 5}). And for each such antipodal

pair, there are two symmetries of order 6 interchanging the antipodal pair. (For

example, every symmetry interchanging 2 and 5 is determined by how it maps the

neighbors of 2 to the neighbors of 5. There are exactly six bijections {1, 3, 7} →
{4, 6, 8}. This gives σ, σ−1, (16)(25)(38)(47), (14)(25)(38)(67), (16)(25)(34)(87),

(18)(25)(36)(47) as all the elements ofG interchanging 2↔ 5.) This gives 4 · 2 = 8

conjugates of σ in G.

4. (a) The image of φ is the subgroup 〈(132), (23)〉 ∼= S3. So no, φ is not surjective.

(b) The map φ is 4-to-1 since |S4|
|φ(S4)| = 24

6 = 4, so |kerφ| = 4. In fact, kerφ =

〈(12)(34), (13)(24)〉 is the normal Klein four-subgroup of S4.

(c) Yes, there is a unique homomorphism φ : S4 → S4 having the two values speci-

fied. This is simply because we defined φ on a pair of elements (123), (34) which

generate S4.

5. See HW3.

(a) |G| = (52 − 1)(52 − 5) = 480

(b)
(

1
1

0
1

)
and

(
1
0

1
1

)
have order 5. These represent the fractional linear transforma-

tions x 7→ x
x+1 and x 7→ x+ 1 respectively.

(c)
(

0
−1

1
−1

)
=

(
0
4

1
4

)
has order 3; recall that this represents the fractional linear

transformation x 7→ 1
1−x of order 3. Alternatively, a linear transformation of

order 3 is a root of x3 − 1 = (x − 1)(x2 + x + 1) and not a root of x − 1; so we

want g to have characteristic polynomial x2 + x+ 1. Such a matrix should have

trace −1 = 4 and determinant 1. Our matrix (or others like it) can be found this

way.

A third solution is to let g permute three nonzero vectors cyclically; for exam-

ple, take g : v1 7→ v2 7→ v3 7→ v1. This necessarily gives a linear transformation

of order 3. To find the matrix of such a linear transformation with respect to the

standard basis, for convenience we can take v1 =
[

1
0

]
, v2 =

[
0
1

]
, v3 = −v1−v2 =[

4
4

]
. The matrix of such a linear transformation is

[
0
1

4
4

]
, which is again of the

above form. Note that in order to complete a 3-cycle g : v1 7→ v2 7→ v3 7→ v1

where v3 = av1+bv2, we must have v1 = gv3 = agv1+bgv2 = av2+b(av1+bv2);

so we require ab = 1 and a+b2 = 0. We solve to obtain a = b = −1 = 4.

(d) If g3 has order 3, then g = −g3 has order 6. For example from (c), we get
(

0
1

4
1

)
of order 6. Alternatively, we want g to be a root of x6 − 1 = (x+ 1)(x− 1)(x2 +

x + 1)(x2 − x + 1). Ruling out elements of order 1, 2 and 3, we want g to have

characteristic polynomial x2 − x + 1. For this, we want g to have trace 1 and

determinant 1. Our matrix is one of many with this form.



6. (a) T (b) F (c) F (d) T (e) T (f) F (g) F (h) T (i) T (j) T

You are not required to provide explanations; but I do so here for your benefit:

(a) As discussed in class, this follows from Cayley’s Representation Theorem, since

Sn is isomorphic to a subgroup of GLn(R) (the subgroup of all n×n permutation

matrices).

(b) If C2 is cyclic of order 2, then C2 × C2 × C2 (the elementary abelian group of

order 8) cannot be generated by any two of its elements.

(c) Counterexample: The direct product S3 × S3 of order 36 has a subgroup H of

order 18 consisting of all pairs (σ, τ) ∈ S3×S3 such that σ and τ are either both

even, or both odd. This is not equal to A × B for any subgroups A,B 6 S3.

(In fact, since H has no elements of order 6, it is not even isomorphic to any

subgroup of the form A×B.)

(d) As discussed in class, a group is dihedral iff it is generated by two involutions.

(e) This is easy to prove (using the hypothesis that G is abelian; without that hy-

pothesis, the statement fails).

(f) This is another fact we have discussed before. Consider the set of all elements

z ∈ C× of finite order, i.e. all complex roots of unity; this is an infinite abelian

group in which all elements have finite order.

(g) Recall that A5 is simple (its only normal subgroups are the trivial subgroup {()}
and A5 itself).

(h) Every group of prime order is cyclic. Recall that this is an elementary consequence

of Lagrange’s Theorem. If G is a group of prime order p, then let g be any

nonidentity element of G; since 〈g〉 is a nontrivial subgroup of order dividing p,

we have |〈g〉| = p, so G = 〈g〉 is cyclic.

(i) The symmetry group of a regular n-gon centered at the origin has a cyclic sub-

group generated by a rotation of angle 2π
n . This rotation is a linear transformation

in SL2(R).

(j) The subgroup H can be uniquely recovered from any of its left cosets by {x−1y :

x, y ∈ gH} = H, as is easy to verify.


