

A group is a set & with a binary operation * which has an identity element; the	
operation is associative; and every element has an inverse. Eq. IR = set of real numbers under addition '+'. It's identify element is 0.	
0 + x = x (x+y)+z = x+ (y+z) (
$x + (-x) = 0 = (-x) + x$ for all $x, y, z \in \mathbb{R}$	
(R, +) is a group. (R, *) ireal numbers under multiplication is almost but not quite a group. (O does not have	è Con
inverse). I is the identity $\mathbb{R}^{\times} = \{all nonzero real numbers} \} = \{a \in \mathbb{R} : a \neq 0\}$ is a group mider nultiplication.	
a = a (ab)c = a(bc) $a \cdot \overline{a'} = \overline{a'}a = 1$ $\overline{a'} = \frac{1}{a}$ for all $a, b, c \in \mathbb{R}^{\times}$.	
(R ^e , x) is a group.	
R with the experision $x \star y = x + y + 7$. This is a group (\mathbb{R}, \star) . For all $x, y, z \in \mathbb{R}$, $(x \star y) \star z = (x + y + 7) + z + 7 = x + y + z + H = x + (y + z + 7) + 7 = x \star (y \star z)$ (\mathbb{R}, \star) is associative. Note that $-7 \in \mathbb{R}$ is an identify element since	· · · ·
$-7 + x = (-7) + x + 7 = x$ and $x + (-7) = x + (-7) + 7 = x$ for all $x \in \mathbb{R}$. So $-7 \in \mathbb{R}$ is an identity element for '*'.	
(-x-14) * x = (-x-14) + x + 7 = -7 $x * (-x-14) = x + (-x-14) + 7 = -7$ for all $x \in \mathbb{R}$. So $-x-14$ is an inverse element for x.	

$(x + y) + z = \pi + (y + z)$	7 = 3 7 = 5 = 5 = 5	(x*y)*Z	= (7+y+7)+2+7 = $\pi(1+2+1/4)$
(x + y + 7) + 2 + 7 = x + (y + 2 + 1) + 1 + 1 + 2 + 14 = x + y + 2 + 14	$\exists z = -2$		= x + (y + z + 7) + 7
	$\Rightarrow (2) = (-2)$		$= q \approx (y \approx 2)$
so (R, *) is associative.			
a a a a 🖉 a a a a a 🧸 a a a a a a a	a an an an an an an an an an		
🥐	· · · · · · · · · · · · ·		
(A) +) () = Enotional municles }	$-\frac{5}{2} \in \mathbb{Q}$		
is a group.	$172 + 172 \in \mathbb{O}$		
$(\mathbb{Q}^{\times}, \times)$ is a group.	T00 π ¢ Φ		
$Q^* = Q - \frac{5}{2} = \frac{1}{2} \frac{1}{1000} \frac{1}{1000}$	≥ · · · · √2 · ∉ Q · · · ·		
(IN, +) is not a group	S · · · · · · · · · · · · · ·		
$N = \{1 \ge 3, 1, \dots, \} = \mathbb{Z}^{>0}$			
$N_{0} = \{0, 1, 2, 3, 4, \dots, \} = \mathbb{Z}^{>0}$			
7 = Sinteriore S = S-1, -3-2-1, 01.	2,34 8		
$(T +) \approx c c c c$	· · · · · · · · · · · · · · · · · · ·		
(2,) is a group.	· · · · · · · · · · · ·		