

A group is a set & with a binary operation * which has an identity element; th	, L
A group is a set & with a binary operation * which has an identity element; the operation is associative; and every element has an inverse. Eq. R = set of real numbers under addition '+'. It's identity element is 0.	
$O + \mathcal{R} = \mathcal{R}$	
$x + (-x) = O = (-x) + x$ for all $x, y, z \in \mathbb{R}$	
(R, +) is a group. (R, *) (real numbers under multiplication is dunost but not quite a group. (O does not h inverse). I is the identify.	rk an
R×= {all nonzers real numbers} = {a e R: a = 0} is a group mider nultiplication.	
a = a (ab)c = a(bc) $a \cdot a' = a \cdot a = 1$ $a' = \frac{1}{a}$ $a' = \frac{1}{a}$ a' = a' a = 1 $a' = \frac{1}{a}$ $a' = \frac{1}{a}$ $a' = \frac{1}{a}$	· · · · ·
(\mathbb{R}^{x}, x) is a group.	
R with the experiation x*y= x+y+7. This is a group (R, *). For all r,y, 2 eR, (x*y)*2 = (x+y+7)+2+7 = x+y+2+14 = x+ (y+2+7)+7 = x*(y*2) so (R, *) is associative. Note that -7 eR is an identify element since	· · · · ·
$-7*x = (-7)+x+7=x$ for all $x \in \mathbb{R}$. So $-7 \in \mathbb{R}$ is an identity element for $*$. and $x = (-7) = x+(-7)+7=x$	· · · · ·
(-x-14) = (-x-14) + x + 7 = -7 x = (-x-14) = x + (-x-14) + 7 = -7 for all $x \in \mathbb{R}$. So $-x-14$ is an inverse element for x.	· · · · ·

• • •	
· · · ·	
· · · ·	
P)	
R)	

GL (R) = { invertible was motives with real entries } is the general linear group
$GL(\mathbb{R}) = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} \right\} : abc d \in \mathbb{R}, ad-bc \neq 0 \right\}, I = \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} a \\ b \end{bmatrix} = adbc \begin{bmatrix} -c \\ a \end{bmatrix}$
GL (R) is a multiplicative group with identity $I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ GL (R) is not commutative for $n \ge 2$.
GL, (R) is not commutative for N>2.
(B) : (mining the second s
(G,*) is Abelian if x*y=y*x for all x,y E G. (abelian)
$GL_n(\mathbb{R})$ is abelian for $n=1$, nonabelian for $n\geq 2$. $\begin{bmatrix} 1 & 3\\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0\\ 5 & 35 \end{bmatrix}$ shereas $\begin{bmatrix} 2 & 0\\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3\\ -1 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 6\\ -4 & 38 \end{bmatrix}$.
$GL_{n}(\mathbb{R})$ is abelian for $n=1$; nonabelian for $n\geq 2$. $\begin{bmatrix} 1&3\\-1&7 \end{bmatrix} \begin{bmatrix} 2&0\\1&5 \end{bmatrix} = \begin{bmatrix} 5&15\\-5&35 \end{bmatrix}$ whereas $\begin{bmatrix} 2&0\\1&5 \end{bmatrix} \begin{bmatrix} 1&3\\-1&7 \end{bmatrix} = \begin{bmatrix} 2&6\\-4&38 \end{bmatrix}$. $GL_{1}(\mathbb{R}) \stackrel{\simeq}{=} \mathbb{R}^{\times}$ [these are somephic groups i.e. essentially the same group. Since \mathbb{R}^{\times} is abelian, so is $GL_{1}(\mathbb{R})$.)
E stim an maidine & sourcefing (fee Jole = for (ach)
Function composition is associative: (fog) = fo (goh)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $X \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{L}$, $f(g(h(x))) \in W$.
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. $(f \circ g \circ h)(x)$
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. $(f \circ g \circ h)(x)$
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)

If X is any set, the bijections X + X (i.e. fore-to-one and auto) form a group under composition. This is the <u>symmetric</u> group
$G = Sym X \subseteq \{ bijections X \rightarrow A \} = \{ plum letions G = A \}.$ $g = X = [3] = \{1, 2, 3\} \qquad (Notation : [n] = \{1, 2, 3, \dots, n\}.$ $n! = 1 \times 2 \times 3 \times \dots \times N$ $There are exactly 3! = 6 bijections [3] \rightarrow [3].$ $n! = 1 \times 2 \times 3 \times \dots \times N$ $n! = 1 \times 2 \times 3 \times \dots \times N$ $n = 0 \text{ order}$
$\frac{1}{3} = \frac{1}{3} = \frac{1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

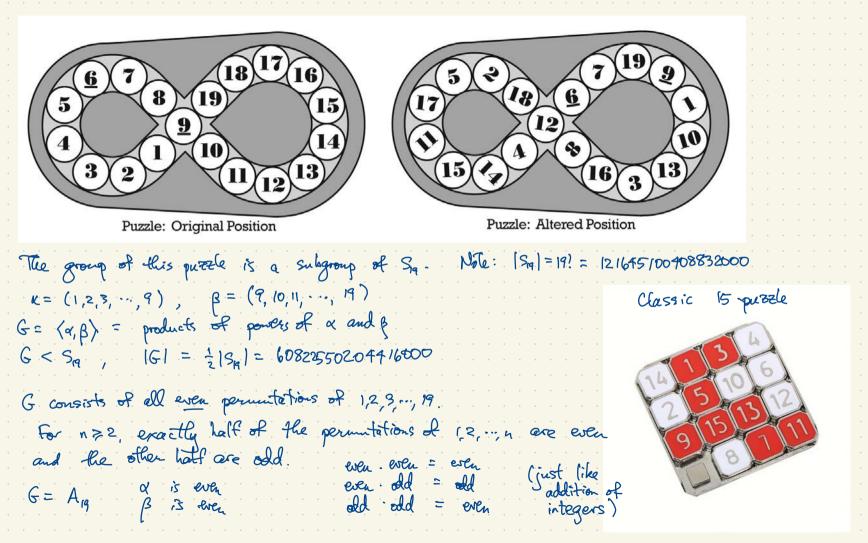
If a, & are permitations then are + for in general but they have the same cycle	structure.
The order of a group G is 1G1, the number of elements in the group. (finite	er infinite)
$ \{S_n \mid = n\}$	
$(GL_{n}(\mathbb{R})) = \infty$	
So is nonabelian for $n \ge 3$. So = $\{(), (12)\}$ is abolian.	
$S_e = \{(1, (12))\}$ is interval. In S_n , disjoint cycles always commute, e.g. in S_q , $(137)(26) = (26)(137)$	
If two permutations commute, must they have disjoint gels? 1' R 2 2 6 82 42	under of edges
	12×4 = 48 Cumber of scrubbin fixing tack age mumber of entires
$\alpha \beta = (135)(29b)(12)(34)(5b) = (195236)$	
$\beta \alpha = (12)(34)(56)(135)(246) = (145236)$	8 × 6 = 98
So acts on [n] = {1,2,, n} (the n points that we are permuting)	humber of symetries fixing each vertex
Do not confuse Sn with [4]. THIS IS NOT THAT. (Sn = n!, 102 = n.	(symmetries map
Typically, groups act on things (generically called points). Typically, groups describe symmetries of things.	kow hany symptriet was caching to 8 = 48 cach of the other foces of faces
A cube has 48 symmetries forming a group 6 of order 48. [6[=48. 24 of these are direct symmetries preserving crientation: these are rotations. 24 of these are virtual symmetries which cannot be obtained by physical motion.	
24 of these are virtual symmetries which cannot be obtained by physical motion.	

In a group & with identity e, an element get has order n if g"= e
list no emalla oner of paral < e
If G is the symmetry group of a cube, every reflection has order 2. N>1
Also a 180° rotation about any axis has order 2.
A 120° rotation of the lube about an axis joining two opposite (antipadel) reflices has order 3.
Also a 180° rotation about any axis has order 2. A 120° rotation of the cube about an axis joining two opposite (antipadal) rertical has order 3. The cube has axes of symmetry joining centers of opposite faces, and a 90° rotation around such an
axis has order 7. In any group, the identify has order 1.
Sz has I element of order 1, i.e. () Sz has I element of order 2 is (12) (23)
Sz has 1 element of order 1, i.e. () 3 elements of order 2, i.e. (12), (13), (23) 2 elements of order 3, i.e. (132), (123)
$ \xi = 6$
The order of an mayde. If de (1,2,3,,n) then an = () that d' = () for k= 1,2,, n-1.
The order of an maybe. If $d = (1, 2, 3,, n)$ then $d^{*} = (1)$ but $d^{*} \neq (1)$ for $k = 1, 2,, n-1$. So that $\frac{1}{2}$ elements of order 1, i.e. (1) $\frac{1}{2}$, i.e. (12),, (13)(21), (six 2-cycles (ij); three permittations (i))(kl) having $\frac{1}{2}$, i.e. (12),, (13)(21), (six 2-cycles (ij); three permittations (i))(kl) having $\frac{1}{2}$, i.e. (12),, (13)(21), (six 2-cycles (ij); three permittations (i))(kl) having $\frac{1}{2}$, i.e. (12),, (13)(21), (six 2-cycles (ij); three permittations (i))(kl) having $\frac{1}{2}$, i.e. (12),, (13)(21), (six 2-cycles (ij); three permittations (i))(kl) having $\frac{1}{2}$, i.e. (12),, (13)(21), (six 2-cycles (ij); the same cycle structure as (13)(4) $\frac{1}{2}$, i.e. (12),, (13)(21), (eight 3-cycles (ijk); the same (12)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2
the same cycle structure as (13)(4) (eight 3-aycles (i i k), the same ''' (123))
6 9, Six 7-cycles e.g. (1234)
(2q) = 2T
(m) = number of n-subsets of an m-set, eq. (4)=6: a 4-set (set with 4 elements, eg. [4] = \$1,2,3,4})
m_1 m_2 m_1 m_2
$= \frac{1}{n! (n-n)!} = \frac{1}{n! (n-1) (n-2) \cdots (1-n-2)} = \frac{4}{3} = \frac{4}{2} = \frac{4}{3} = \frac$

$S_5 = \{permitations of [5] = \{1, 2, 3, 4, 5\} \}$ is a group of order $ S_5 = 5! = (20)$ (12)(13) = (132)
How many elements of each order does so have?
How many elements of each order does 5 have? 1 dement of order 1: () 25 elements of order 2: (ij) (2)=10 cycles of length 2 (12)(13) = (132) (12)(13) = (132) (12)(13) = (132) (12)(13) = (132) (12)(13) = (132) (12)(13) = (132)
25 elements of order 2 ' (ij) (2)=10 cycles of engric 2 (ij)(kl) 5×3=15 elements which are a product of two disjoint 2-cycles
$\theta : 0 \times 3 \div 2 = 15$
hours noung how many choices of 2-cycles (k,l) since (ij) (k,l) = (k,l) (ij) 2-cycle (ij) disjoint from (ij)
20 elements of order? 3-udes (ijk) (5)×2 = 10×2=20 is a transposition.
20 elements of order 3. 3-cycles (ijk) (3)×2 = 10×2=20 is a transposition.
27 Dements of order 5: 5-cycles (1****) (51×31 = 5×6=30
$\frac{36}{29} \text{ elements of order } 4 \cdot \text{cycles } (ijkl) e.g. (1234), (1342), (2534), \cdots$ $\frac{29}{29} \text{ elements of order } 5 : 5 \cdot \text{cycles } (1 * * * *) = (5) \times 3! = 5 \times 6 = 30$ $\frac{20}{20} \text{ elements of order } 6 : (ijk)(1m) = 6 \text{ for many ways}$
how many ways to choose i, j, k, l $(1 \ge 3)(45) \in S_{2}$ $(1 \ge 3 \cdot 1)(5 \cdot 6) \in S_{6}$ has order 4 has order 4
$ 20 = (S_5)$
If des is written as a product of disjoint cycles, then its order is 2 500 1 2 500 And And And And And And And And And And
If de S is written as a product of disjoint cycles, then its order 23 26 12 500 is the least common multiple of the lengths of its cycles. (123) (45678) has order 15
In R = { nonzero real numbers { under nuttiplication, (123) (456789) 6
1 has order 1.
$\begin{array}{ccc} -1 & & & & & \\ -1 & & & & \\ \end{array} \begin{array}{ccc} & & & & \\ \end{array} \begin{array}{ccc} -1 & & & & \\ \end{array} \begin{array}{cccc} & & & & \\ \end{array} \begin{array}{cccc} & & & & \\ \end{array} \begin{array}{ccccc} & & & & \\ \end{array} \begin{array}{ccccccccccccccccccccccccccccccccccc$
every other element & \mathbb{R}^{\times} (a), otherwise $\left (123)(45678) \right = 15$ has infinite order. We also write the order of $a \in G$ as $ a = 12$, $\operatorname{ord}((123)(45678)) = 12$

The symmetry group of a cube is a group 6 of order 48 i.e. 161=48. It is useful to think of 6 as a subgroup of S8:
$\begin{cases} f = f(1), (1234)(5876), (1854)(2763), (18)(27)(36)(45), (173)(486), \dots \\ f = f(1), (1234)(5876), (1854)(2763), (18)(27)(36)(45), (173)(486), \dots \\ f = f(1), (1234)(5876), (1854)(2763), (18)(27)(36)(45), (173)(486), \dots \\ f = f(1), (1234)(5876), (1854)(2763), (18)(27)(36)(45), (173)(486), \dots \\ f = f(1), (1234)(5876), (1854)(2763), (18)(27)(36)(45), (173)(486), \dots \\ f = f(1), (1234)(5876), (1854)(2763), (18)(27)(36)(45), (173)(486), \dots \\ f = f(1), (1234)(5876), (1854)(2763), (18)(27)(36)(45), (173)(486), \dots \\ f = f(1), (1234)(5876), (1854)(2763), (18)(27)(36)(45), (173)(486), \dots \\ f = f(1), (1234)(5876), (1854)(2763), (18)(27)(36)(45), (173)(486), \dots \\ f = f(1), (1234)(5876), (18)(5876), (18)(5876), (18)(5766), (1$
7 of symmetry aris of symmetry of symmetry
90° V
(1854) (22(2) (1234) (5876) - (173) (2) (486) is a 120° rotation about the axis
$(1854)(2763)(1234)(5876) \leq (173)(2)(486)(5) = (173)(486)$ is a 120° rotation about the axis joining the pair of antipodal vertices 2,5
If G is any group and $g_1,, g_k \in G$ then $\{g_1, g_2,, g_k\} = subgroup of G generaled by g_1,, g_k is intervaled by g_1,, g_k.$
The tetter S has a rotational symmetry about its centre (rotate 180° about -S. The symmetry group in this case is
{I, R} where R is the 180° rotation, R= I. Both symmetries of S preserve orientation. 5+
$\frac{y}{1+x} \neq \frac{x}{1+y} + \frac{y}{1+x} \neq \frac{y}{1+x} + \frac{y}$
U has symmetry group of order, 2 [I,T] where T is a reflection in the vertical axis of symmetry, T=I Reflections reverse orientation; notations preserve orientation.

Y has symmetry group of order 2
Y has symmetry group of order 1.
has symmetry group of order 6. (3 rotational symmetries, 3 reflective symmetries).
For any object X C R", either all symmetries of X preserve orientation or exactly half of the symmetries
ic songholian
Martin andre (ender)
The figure EI as a symmetry group of order 4 $\{I, R, T, RT\}$ where $I = identify, R = 180^{\circ}$ robotion about the canter, $T = reflection$ in horizontal axis of symmetry, $RT = TR = reflection$ in the restical axis of symmetry. This group is declian.
rotation about the center, T = reflection in horizontal axis of symmetry, RT = TR = reflection in the restical axis
of symmetry. This group is addition.
has the same symmetry group as EI (abelian of order 4).
has the same symmetry group as EI (abelian of order 4).
has the same symmetry group as EI (abelian of order 4). These infinitely many symmetries. The symmetry group is infinite nonabelian.
has the same symmetry group as EI (abelian of order 4).


A Symme	ty of X	is a bijection pe of X . I then the syn ions, etc.).	X→X (permutation -	of the points	ot X) wh	ich preserve	: distances	and
angles	ie the sha	pe of X.	tere typicall	$X \subseteq \mathbb{R}^{2}$	$\int X \leq R^{2}$	cludes man	by transformation	ac (total	
eg. if	X=R	then the sys	muetries (1	sometines) of			J		
						· · · · · · ·			
If X is	s a circle	then X has rn E then	indivitely m	any symme	obies.				
Σ£Γ Χ́ ° iš	the patter	rn E then	X has exac	thy 2 symme	hies.		Rai i i i i i		
· · · -		() the	m K ··· ··	7					
The letter	R has trivia	l symmetry grow	up (only the	identity).		 			
	s has sign	nmetry group	of order c.	Sum	X = Sall a	mutations	of X?		
Nole: \	he symmetry	goorp of X	is a sugar	nop of ogin					
E fla	of the second	7772	in IR ⁻ is d	utterent from	its mirror	images so	all its symme	mes me	
prienta	tion-preservi	g (in partic of the patte	ular it has n	o reflective sy	maetries).				
Jome 3	ymmeling	at in yaw	A I R		C. Ata 15	20° about the	at mat		
R(B)	SSSS	For every pr r(A) RR(A) RACCC S	Also we have	translational	symmetries for	I by trais	loting an inte	ger distance	harizotall
	K(M)	R'(A) R'R(A)	Also, halt time RR' ≠	R'R any point	midwey erma	tor options and	and accelerat 23		
· · · · · · ·		0000	00'61	/_				10	
	R is a l half turn about fluis center	l'is a helf-form	To fat R	R' is a transf	lation sym	metry gro	np is non	abelian.	
	about fluis Center	abort-this center	two wints to	, the left	where a 'm	it' is the	distance bet	De tra de	fr
				centers of	two adjacent	Ss. A	ap is non distance bet d R'R is = RR'	Tul - Tuns (a	
				two units	to the right	(K K) .	- a KKA a a a a		

	1×3×3 block has 16 symmetries. Compare: A square has only 8 symmetries.	. .
	group of order 32. This group is nordeelian. motivies and 16 other symmetries which revouse orie	
A regular n-gon (n > 3) has a symmetry	- group of order 2n (n rotational symmetries Dihedral groups	and n
reflective symmetries).	Dihedral groups	· · · · · · · · · · ·
n=4 n=3 n=5		

In R [*] , the nuttiplicative group of nonzero real numbers,
$\langle 3 \rangle = \{, \frac{1}{27}, \frac{1}{4}, \frac{1}{3}, 1, 3, 9, 27, 81, 243, \} = \{ 3^k : k \in \mathbb{Z} \}$
$\langle 2,3 \rangle = \{2^{k}3^{k} : k, d \in \mathbb{Z}\}$ so $\frac{2}{q} \in \langle 2,3 \rangle$, $5 \notin \langle 2,3 \rangle$, $21 \notin \langle 2,3 \rangle$ (non-cyclic but if is abelian)
$\langle 1 \rangle = \{1\}$ with identity 1
<1> = {1} Theorem Let G be a group and let g \in G. Then $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ has order $ \langle g \rangle = g $. (The order of each element is the order of the subgroup that it generates.)
A a har that is prove the her a single element (i.e. a subgroup of the form (q) for some qEG) is called
A subgroup that is generated by a single element (i.e. a subgroup of the form <g> for some g ∈ G) is called <u>cyclic</u>. Cyclic groups (i.e. groups that are generated by a single element) are durays abelian since in <g> [g)= [gk: kez] we have a al = a^{it} = aⁱaⁱ</g></g>
In the subgroup $\langle 3 \rangle < \mathbb{R}^*$ has two generators 3, $\frac{1}{3}$ since $\langle 3 \rangle = \langle \frac{1}{3} \rangle$.
QX is not finite is no finite list of elements and eR* such that
R* is not finitely generated: there is no finite list of elements $q_1, \dots, q_k \in \mathbb{R}^*$ such that $\langle a_1, \dots, q_k \rangle = \mathbb{R}^*$ for every finite list $q_1, \dots, q_k \in \mathbb{R}^*$, the subgroup $\langle a_1, \dots, q_k \rangle < \mathbb{R}^*$ is a proper subgroup $\langle a_1, \dots, q_k \rangle = \mathbb{R}^*$ for every finite list $q_1, \dots, q_k \in \mathbb{R}^*$, the subgroup $\langle a_1, \dots, q_k \rangle < \mathbb{R}^*$ is a proper subgroup
(i.e. a subgroup which is a proper subset). HSG means H is a subgroup of G; H < G means H is
a proper subarra of 6
a proper subgroup of 6. Proof of the Theorem (about orders)
Proof of the Theorem (about orders) First suppose $g \in G$ has infinite order i.e. $g^{k} \neq 1$ for $k = 1, 2, 3,$ We must show that $ \langle g \rangle = \infty$ where $\langle g \rangle = [g^{k}]_{k \in \mathbb{Z}}$ First suppose $g \in G$ has infinite order i.e. $g^{k} \neq 1$ for $k = 1, 2, 3,$ We must show that $ \langle g \rangle = \infty$ where $\langle g \rangle = [g^{k}]_{k \in \mathbb{Z}}$ We will prove that all the powers g^{k} ($k \in \mathbb{Z}$) are distinct in this case. If not thus $g^{k} = g^{k}$ for some We will prove that all the powers g^{k} ($k \in \mathbb{Z}$) are distinct in this case. If not thus $g^{k} = g^{k}$ for some $k, l \in \mathbb{Z}$ with $k \neq l$, then without loss of generality $k < l$ and $l = g = \overline{g} \cdot \overline{g} \cdot \overline{g} = \overline{g} \cdot \overline{g} \cdot \overline{g} = g^{k}$, a contradiction. $G = \langle a \rangle _{=} \infty$ in this case.
Whe will some that all the powers of (hEZ) are distinct in this case. If not then gk = g for some
k, l ∈ 7 with k≠l, then without loss of generality k < l and 1= g = g g = g g = g g = g g = g g = g g = g g = g g = g g = g g = g g =
So $ \langle g \rangle = \infty$ in this case.

Next suppose $ g = n$ is finite i.e. $n \ge a$ positive integer and $g^{k} \neq 1$ We will show that $\langle g \rangle = \{1, g, g^{2}, \dots, g^{n-1}\}$ where these n ele as above shows that $1, g, g^{2}, \dots, g^{n-1}$ are distinct (otherwise $g^{d-k} = 1$ where $d = \{1, 2, \dots, n-1\}$, contrary to the assumption $ g $ for every $k \in \mathbb{Z}$. For this we use the Division Algorithm:	for k meats k l	=1,2,3 are	distinc	but t. 7 k <l≤< th=""><th>gⁿ = 1. til Sam n-1</th><th>e arg</th><th>ement Voen</th></l≤<>	g ⁿ = 1. til Sam n-1	e arg	ement Voen
as above shows that I g g g the distribut (distribution la	$\int -g$ l=n	Tł	rema	ains to	show "	that	$q \in [1, q, q] = q$
g =1 where die $\in \{1, 2,, n-1\}$, contrary to the discrimination	le - e	2n+r	where	1 9.re	7 re	501	
for every kER. For this we use the Division regon	n - 1			· ['	.	- 2011	2.11.12
Then $g^k = g^{2n+r} = (g^n)^2 g^r = l^2 g^r = g^r \in \{l, g, g^2, \dots, g^n\}$.	• •						
$\frac{1}{2} = \frac{1}{2} = \frac{1}$							
Aludara 9/27/23							
I ligard marila			• • •			• •	
$I_{n} = S_{3} = \{(1), (12), (13), (14), (123), (132)\}$							
The subset {(), (12), (13)? is not a solution It is not a grap since multiplication is not function a binary operation. A binary operation on 5 is							
a since mertion A burry perchips on 5 is							
a mup 3x5-75 where 5x5 is = {(St) stes)						• •	
tor in operation *: Sex Sz -7 Sz, * (gh) ESz is	• •			• •			
In some books in something the something the	• •		• • •				
In some books use emphasize the property gth ES by saying the is cloud on S.							
\rightarrow f R-R, x \mapsto x ³							
my Galtingh							
							• • • • •
	• •		• • •			• •	
			• • •	• • •			

Examples of subgroups (() 7 "all pavers at the elamit whole group -1 ((17)). $((123)7 = \{(), (123), (132)\}$ 15-1=6 All its elements have elements have 1,2,3) order dividing normules theorem Suys every subgroup + only 6 Finite group) bisa ander 6 In particular, 161 to every at b. Husse Diayrum of Subpaps ((23)) Sn hus (2) transpositions < C1217 (13)7 (1237 (2 cycle (ij)) These generate Sn ire So Sn is generated to the not masposition (ij (13),..., (1n)7= Sn

· · ·	which permitations are even? and which are odd? Fix $n \ge 2$ and consider the polynomial $\Delta_r(x_1, \dots, x_h) = \prod_{1 \le i < j \le h} (x_j - x_i)$
Ь	$f_{0T} = 3: \Delta (x_1, x_2, x_3) = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2)$ $f_{0T} = e_{x_1} - x_2(x_3 - x_1)(x_3 - $
· · ·	$(132)\Delta = (132)(x_2 - x_1)(x_3 - x_1)(x_3 - x_2) = (x_1 - x_3)(x_2 - x_3)(x_2 - x_1) = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2) = \Delta$
• •	in general for $n \ge 2$, $\alpha \in S_n$, $\alpha \Delta(x_1,, x_n) = (sgn \alpha) \Delta$ If $x, p \in S_n$ then $\alpha \Delta = (sgn \alpha) \Delta$ $p \Delta = (sgn p) \Delta$
· ·	$(\alpha\beta)\Delta = Sgn(\alpha\beta)\Delta = \alpha(\beta\Delta) = \alpha(Sgn\beta)\Delta) = (Sgn\beta)\alpha\Delta = (Sgn\beta)(Sgn\alpha)\Delta$ $\pm i$
· · · ·	$\begin{array}{llllllllllllllllllllllllllllllllllll$

•	. 7	Tar	JSI	005	ति	ons	•	Ċ,	ζj		are	5	dd	- 1	er	m	ita	tio	ns.											• •			• •	0				•			0		
•	•	(1	2	3	4	5	- 6	, ? ,	. 8	3	9))	5	((9)(î 8)(้เวิ	:)(16	~)	((5)	(1	4)	(1)	3)	(12)			• •	•	• •		•	•	• •		•		•
	74		k	j	je	- vec			the	3	ĪS		æd i	ď		с г 	and	tra P	Vi	ie	ve	essa	· · ·	•			•							0				•			0		
•	A	č	ud	le	. 0	P	de	l	6	à	fl	1	s ·	a	/ / ~	evE	m	Di	n.		tà	1.0	n j	•		• •		• •	•		•		• •	•			•			•	•	•	
			J	• [-		 	ev	en	-	0			•	•		ode	d :	-1 -		•	•		.). 		•		•	• •		• •	•			•	•		•	•			•	•	•
																																•		۰					• •		۰		
•	I	1	α	•	is		- p	rol	u A	L. 8	ð	0	24	e	Sen	M	m	bes	. ଟ	f .	fre	zus	pos	itie	, ,	16	en	K	•	is -	a	^	ese	a c	peri	niñ	(a()	Dr.		•	•		•
•	•	•	~	•			<u>·</u>	•					1	od	d		٢	•		•		•	`~	•	÷.		~		•				ede	/ • •		•	- 1	÷			•	•	•
•	•			•	•	•		•	•	•	• •				•	• •							• •			• •				• •		•	• •		•	•	•	•	• •	•		•	•
•	•			•	•	•		•	•		• •			•	•	• •			• •		•		• •			• •		• •		• •			• •		•				• •				•
•	•					•				•	• •					• •							• •			• •				• •			• •		•	•			• •				•
	•				•	•					• •					• •	•	•	• •	•			• •		•	• •		• •		• •		•	• •		•	•	•	•	• •			•	•
	•	•		•	•	• •			•	•	• •	•	•			• •	•	•	• •	•			• •	•	•	• •	•	• •	•	• •		•	• •		•	•		•	• •	•		•	•
	•			•	•				•	•						• •			• •				• •			• •				• •	•		• •						• •				
						•					• •				•	• •							• •			• •		• •	٠	• •			• •		•				• •				
	•				•	•			•	•	• •			•	•	• •			• •				• •			• •		• •		• •		•	• •		•			•	• •	•		•	
•						•					• •					• •			• •				• •			•		•					•		•				• •				•