

Orbits and Stabilizers for Group Actions Eg $G =$ symmetry group of $3\pi^2$ $G < S$ $G = \langle (1234), (13) \rangle$
 $G =$ permutes the four vertices transitively (meaning if $x, y \in \{1, 2, 3, 4\}$
 $g \in G$ such that $g(x) = y$). a dihedral group of For legal moves of a Rubik's cube, the group of all moves does not permite the 26 small cubes
(the group has three orbits of size 12, 3, 6)
A group action is transitive & there is only only one orbit $(0)(z) = 2$
A group act The stabilizer of x is stable (x) = $G_x = \{ g \in G : g(h) = x \}$ $\le G$ (a subgroup) eg in the dihedral group above, Stab₆(2)= $G_2 = \{$ all elements of 6 fixing 23 = {(), (13)}
Stab₆(1) = {(), (24)} = Stab₆(3) = < (24)} = = < (1) $= \langle (13) \rangle$ The orbit of x is $O(x) = \{g(x) : g \in G\}$ In this case there is only one orbit $\mathcal{O}(1) = \{1, 2, 3, 4\} = \mathcal{O}(2) = \mathcal{O}(3) = \mathcal{O}(4)$ Theorem If G permites $X = [n] = \{1, 2, ..., n\}$ then for every $x \in X$, $|\text{Sha}(x)| |O(x)| = |G|$.

Application to graph theory : computing the number of a tomorphisms of a graph. Eg . Γ = Γ ⁵ has four automorphisms. Its automorphism group is a Klein four-group ication to graph theory : computing
 $\Gamma = \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \text{ has four automorphisms.}$ $G = \langle (13)(46), (14)(25)(36) \rangle = \frac{1}{2} \langle (1, 13)(46), (14)(35)(36) \rangle$ $S = \langle (13)(46), (14)(25)(36) \rangle = \{ (1, 13)(46), (14)(3)(36) \rangle$
G has two orbits on vertices: {1,3,9,6}, {2,5}. (13)(46), (14)(25)(34)} E_3 . P = $\frac{1}{4}$ e $\frac{1}{3}$ is two orbits on vertices: {1,3,46} iz,5}.
 E_3 . P = $\frac{1}{4}$ e $\frac{1}{3}$ is two automorphisms including $(0.1234)(56789)$
 -7 $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$ has automorphisms including $(0.1234)(56787)$
 $(0.5)(1847)(2639)$ I_{∞} has four a
 I_{∞} I_{∞} I_{∞} and I_{∞} and I_{∞} and I_{∞} and I_{∞} and I_{∞} and I_{∞} & 1/- June 1997 of the Contract of e Are $\frac{1}{2}$ = $\frac{1}{4}$ les au go& $G = \langle (13)(46), (14)(25)(36) \rangle = \{ (1,3)(46), (17)(25)(36) \rangle \}$

G has two orbits on vertices: $\{1,3,46\}$ $\{2,5\}$.

(0.1.2.3.46) $\{5\}$ (5.4.7.8.9)

(0.5) (1.8.4.7) (2.6.3.9)

(0.5) (1.7.4.8) (2.9.3.6)

(0.5) (1.7.4.8) (2.9.3.6) Pour automner
four automner
les automner
les automner
1
avrilieus
1 10 P is the Peterson graph 7018 2 - 2 - 10 6 How many automorphisms does I have ? $Aut P = \{$ automorphisms of $P\} \leq S_{\infty}$ actually Sym $20, 1, 2$ $2, ..., 9$ $|Meorem |AutP|=120$. Is Aut $P \cong S_g$? Proof First enumerate orbits of $G = AutP$ on the vertex set $\{0, 1\}$ $, 2, ..., 9$ There is only one orbit by considering the dihedral subgroup of order ¹⁰ and $(0.5)(1847)(2639)$, So G is transitive on vertices $|G| = |U(G)|$. where G_{p} = nd
| G_o|
Stab (0) .