Algebra I

Group Theory

Book 1

A group is a set & with a binary operation * which has an identity element; the operation is associative; and every element has an inverse.

Eg. R = set of real numbers under addition '+'. Its identity element is 0. (x+y)+2= x+ (y+2) x + (-x) = 0 = (-x) + x for all $x, y, z \in \mathbb{R}$ (R, +) is a group. (R, x) (real numbers under multiplication is almost but not quite a group. (O hoes not have an inverse). I is the identity R'= {all nonzero real numbers} = {a e R: a + 0} is a group mude untiplication. 1a = a (ab)c= a(bc) for all a, b, ce R*. $a \cdot \overline{a} = \overline{a} \cdot a = 1$ (Rx, x) is a group. R with the experation x * y = x * y + 7. This is a group (R, *) For all $x, y, z \in \mathbb{R}$ (x*y)*z = (x+y+7)+z+7 = x+y+z+A = x+(y+z+7)+7 = x*(y*z)so (R,*) is associative. Note that $-7 \in R$ is an identity element since

-7*x = (-7)*x+7=x for all $x \in \mathbb{R}$. So $-7 \in \mathbb{R}$ is an identity element for '* and x*(-7) = x+(-7)+7=x

(-x-14)*x = (-x-14)+x+7=-7 for all $x \in \mathbb{R}$. So -x-14 is an inverse element for x. x*(-x-14) = x + (-x-14) + 7 = -7

so (R *) is associative. (Q,+) Q = { rational musers } (Q" x) is a group. Qx = Q-{0} = {all novero (N,+) is not a group N = {123,9, ...} = Z>0 No = {0,1,2,3,4,...} = Z>0 Z = {integers } = } = ; -3, -2, -1, 0, (Z, +) is a group. but (\mathbb{R}^{n}, x) is not a subgroup $(\mathbb{R}, +)$ (although $\mathbb{R}^{n} \subseteq \mathbb{R}$) In \mathbb{R}^{n} , $2^{n}3=6$ but in $(\mathbb{R}, +)$, 2+3=5 subset

 $GL_{2}(R) = \{ \begin{bmatrix} a & b \end{bmatrix} : a_{b}c_{1}d \in R, \quad ad-bc \neq 0 \}, \quad I = \begin{bmatrix} a & b \end{bmatrix} = \frac{1}{adbc} \begin{bmatrix} a & b \end{bmatrix} = \frac{1}{adbc} \begin{bmatrix} a & b \end{bmatrix}$ GL (R) is a multiplicative group with identity I = 01...0 GL, (R) is not communitative for n>2. GL (R) is commutative. (G, *) is Abolian if x * y = y * x for all $x, y \in G$, (abelian) [13][20]=[5 15] sheres [20][13]=[26]. GL, (R) is abelian for n=1, nonabelian for $n\geq 2$. $\begin{bmatrix} -1 & 7 & 7 \\ -1 & 7 & 7 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ 5 & 35 \end{bmatrix}$ whereas $\begin{bmatrix} 2 & 5 & 7 \\ 1 & 7 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 4 & 38 \end{bmatrix}$.

GL, (R) $\stackrel{\sim}{=}$ R* [-these are isomorphic groups i.e. essentially the same group. Since R* is abelian, so is GL, (R).) Function composition is associative: (fog) = fo (goh) $X \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ g(h(x)) { Z, f(g(h(x))) W. If x ∈ X then h(x) ∈ Y, (fogoh) (x) fog \$ gof it is associative Because motive multiplication is expressing the composition of linear transformations, but not necessarily communitative.

GL, (R) = { invertible were motives with real entries} is the general linear group

If X is any set, the bijections X - 7X (i.e. fore-to one and outo) form a group under composition. This is the symmetric group G= Sym X = { bijections X -> X} = { permutations of X} Not a bigestion (neither one onto) eg. X = [3] = \$1,2,3}. (Notation: [n] = \$1,2,3,..., n].) There are exactly 3!=6 bijections [3] \rightarrow [3]. (a fortorial) is the number of permitations of [4] $\begin{array}{c|cccc}
\hline
\begin{pmatrix} 1 & & & \\ 2 & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & \\$ [S3 = 6. S3 is a nondedian 6. S₃ is the smallest nonabelian group. In S₃ (12)(13) = (132) (13)(12)= (123) $Q \stackrel{Q_2}{\sim} \qquad \stackrel{$ (12) (123) (132) (132) (13) cycle notation for Sym [3] = $\frac{5}{5}$, (12), (13), (23), (123) (132) } — 78 B 3R 2277 $\beta = (7,2)(4,18)(3)(6)(5,9) = (184)(27)(59)$ (3) = (1) (4,1,8) = (1,8,4) = (8,41) (3) = (1) (4,1,8) = (1,8,4) = (8,41) (4,1,8) = (1,8,4) = (1,8,4) (4,1,8) = (1,8,4) = (1,8,4) (5,9) = (1,8,4) = (1,8,4) (1,8,4) = (1,8,4) = (1,8,4) (3) = (1,8,4) (4,1,8) = (1,8,4) = (1,8,4) (4,1,8) = (1,8,4) = (1,8,4) (5,9) = (1,8,4) (1,8,4) = $\alpha = (1,7,3,4)(2,5)(6,8,9)$

If a, & are permitations then of + for in general but they have the same cycle structure. The order of a group G is 161, the number of elements in the group. (finite or infinite) $|S_n| = n$ (GL (R)) = 0 In is nonabelian for n > 3 $S_2 = \{(1), (12)\}$ is abolian In S_n , disjoint cycles always commute, e.g. in S_q , (137)(26) = (26)(137) If two permutations commute, must they have disjoint gold? I'a 2 2 Note: The two 3 regules in a intersect with the three 2 cycles in B. 0 = (135) (246) 12x 4 = 48

Commber of services B= (12)(34)(56) aß = (135) (296) (12) (34) (56) = (195236) 8 × 6 = 48 Ba= (12)(34)(56)(135)(246) = (145236) sumber of symmetries 3, acts on [n] = {1,2,..., n} (the n points that we are permuting) Do not confuse Sn with [n]. THIS IS NOT THAT. ISn = n!, I [n] = low hany
symmetries was
each face to
each of the
other faces Typically, groups act on things (generically called points).
Typically, groups describe symmetries of things. A cube has 48 symmetries forming a group 6 of order 48. [6]=48.

24 of these are direct symmetries preserving orientation: these are retations.

24 of these are virtual symmetries which commot be obtained by physical motion.

In a group & with identity e, an element ge G has order n if $g^n = e$ but no smaller power of equals e. 9*9* ···*9 If G is the symmetry group of a cube, every reflection has order 2. Also a 180° rotation about any axis has order 2.

A 120° rotation of the cube about an axis joining two opposite (artipodal) rectical has order 3.

The cube has axes of symmetry joining centers of opposite firces, and a 90° rotation around such an axis has endos 4. In any group, the identify has order 1. S₃ has I element of order 1, i.e. ()
3 elements of order 2, i.e. (12), (13), (23)
2 elements of order 3, i.e. (132), (123) The order of an meyele. If $\alpha = (1, 2, 3, ..., n)$ then $\alpha'' = ()$ for k = 1, 2, ..., n-1.

So has $\frac{1}{9}$ elements of order 1, i.e. ()

(12) ... (13) (2) ... (5) (2-cycles (1)). three permutations (1) i.e. (12),..., (13)(24),... (six 2-cycles (ij); three permitations (ij)(kl) having the same cycle structure as (13)(24); e. (123),... (eight 3-cycles (ijk), the same (123))

Six 4-cycles e.g. (1234)

3= 8 permitations of [5]= {1,2,3,4,5} } is a group of order |S=1= 5! = 120. (12)(13)= (132) How many elements of each order does & have?

1 element of order 1: ()
25 elements of order 2: (ij) (2)=10 cyclos of length 2 (ij)(kl) 5x3=15 elements which are a product of two disjoint 2 cycles choices of 2-cycles (k.l.) since (ij) (k.l.) = (k.l.) (ij)
2-cycles (k.l.)
2-cycles (k.l.) A 2-cycle (ij) (i.e. cycle of length 2) is a transposition. (5) x2 = 10x2=20 20 elements of order 3. 3-cycles (ijk) 30 elements of order 4: 4-cycles (ijkl) e.g. (1234), (1342), (2534), ...

24 elements of order 5: 5-cycles (1****) (5) × 3! = $5 \times 6 = 30$ 20 elements of order 6: (ijk)(1 m) 3,3,9,5 how many ways to choose i, j,k, & (123)(45)€Sz (1234)(56) €S6 has order 6 has order 4 1 2 5 6 1 2 5 6 AN 3 If $a \in S$ is written as a product of disjoint cycles, then its order is the least common multiple of the lengths of its cycles. (123) (45678) has order 15 In R = ? nontero real numbers? under nuttiplication, (123) (456789) I has order 1; every other element & Rx has infinite order. If $a \in \mathbb{R}^*$, ord $(a) = \begin{cases} 2', & \text{if } a=1; \\ \infty, & \text{otherwise} \end{cases}$ We also write the order of $a \in G$ as |a| = 2g. ((123) (45678) = 15 ord ((123) (45678))=15

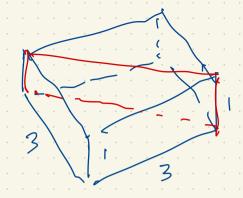
The symmetry group of a cube is a group 6 of order 48 ie. |6|=48.
It is useful to think of 6 as a subgroup of S8: (1234) (5876), (1854) (2763), (18) (27) (36) (45), (173) (486),

8 16 dentity 90 rotation about 90 rotation reflection in the vertical axis about grown horizontal plane of Symmetry axis of Symmetry about grean horizontal plane axis of symmetry (1854)(2763)(1234)(5876) = (173)(2)(486) (5) = (173)(486) is a 120° rotation about the axis joining the pair of autipodal vertices 25 If G is any group and $g_1,...,g_k \in G$ then $\langle g_1,g_2,...,g_k \rangle =$ subgroup of G generated by $g_1,...,g_k$ i.e. the Smallet subgroup of G containing $g_1,...,g_k$ The letter S has a rotational symmetry about its centre (rotate 180° about - S. The symmetry group in this case is {I, R} where R is the 180° rotation, R2 = I Both symmetries of S preserve orientation. 5# (\$\frac{1}{x} \display \displine \display \display \display \display \display \display \displa a reflection in the vertical axis of symmetry, T=I U has symmetry group of order 2 {I,T} where T is Reflections reverse orientation; rotations preserve orientation.

Y has symmetry group of order 2 I has symmetry group of order 1. (3 rotational symmetries, 3 reflective symmetries). has symmetry group of order 6 For any object X C R", either all symmetries of X preserve orientation or exactly half of the symmetries operative orientation (so the other half reverse orientation).

The content of the symmetries of X preserve orientation of exactly half of the symmetries of the symmetries of the symmetries of X preserve orientation or exactly half of the symmetries of X preserve orientation or exactly half of the symmetries of X preserve orientation or exactly half of the symmetries of X preserve orientation or exactly half of the symmetries of X preserve orientation or exactly half of the symmetries of X preserve orientation or exactly half of the symmetries. The symmetry group of \ is \ \{\frac{1}{2}, \text{R}, \text{R}^2, \text{T}, \text{TR}^2, \text{T (counter-cleckwise 120° rotation about center) The figure E3 as a symmetry group of order 4 {I,R,T,RT3 where I= identity, R=180° robotion about the center, T= reflection in horizontal exist of symmetry, RT=TR = reflection in the vertical axis of symmetry. This group is declian. has the same symmetry group as E3 (abelian of order 4). that infinitely many sympnetries. The symmetry group is infinite nonabelian.

A symmetry of X is a bijection $X \to X$ (permutation of the points of X) which preserves distance and angles i.e. the shape of X. Here typically $X \subseteq \mathbb{R}^2$ or $X \subseteq \mathbb{R}^3$. infinitely transformations (rotations, eq. if $X = \mathbb{R}^2$ then the symmetries (isomotives) of $X = \mathbb{R}^2$ includes many transformations (rotations, raflections, translations, etc.). If X is a circle then X has infinitely many symmetries. If X is the pottern E then X has exactly 2 symmetries. 1-1-1-0 then X ... The letter R has trivial symmetry group (only the identity).


... S has symmetry group of order 2. Note: The symmetry good of X is a subgroup of Sym X = { all permutations of X }. Eg. the pattern ... SSSSS... in R2 is different from its mirror images so all its symmetries are some symmetries of the pattern: R(B) S So SSS ... For every point at the center of some S, rotate 180° about that point.

R(A) R(O) = 0 RR(A) R(A) Also we have translational symmetries found by translating an integer distance horizontally also, half turns also any point hudway between the centers of two adjacent S:

RR' = R'R

RR' = R'R ----S.S.S.S.S.S.S.S.S RR'(A) + R'(A) So RR' + R'A So + Re R is a R' is a half from about this about this about this center center In fact RR' is a translation symmetry group is nonabelian.

The curits to the left where a 'unit' is the distance between the centers of two adjacent S's. And R'R is the translation two units to the right. (R'R) = RR'

1×3×3 block has 16 symmetries.

Compare: A square has only 8 symmetries

A regular actingonal prism has symmetry group of order 32. This group is nondealism.

(16 rotational symmetries and 16 other symmetries which reverse orientation)

A regular n-gon (n > 3) has a symmetry group of order 2n (n rotational symmetries and reflective symmetries).

Dihedral groups

n=4 n=3 n=5

<3> = {..., \frac{1}{27}, \frac{1}{4}, \frac{1}{5}, 1, 3, 4, 27, 81, 243, ...} = \{3\frac{1}{5} : keZ\} $\langle 2,3 \rangle = \left\{ 2^k 3^k : k, d \in \mathbb{Z} \right\}$ so $\frac{2}{9} \in \langle 2,3 \rangle$, $5 \notin \langle 2,3 \rangle$, $21 \notin \langle 2,3 \rangle$ (non-cyclic but if is abelian) Theorem Let 6 be a group and let $g \in G$. Then $\langle g \rangle = \{g^k : k \in \mathbb{Z}^3 \text{ has order } |\langle g \rangle| = |g|$ (The order of each element is the order of the subgroup that it generates.) A subgroup that is generated by a single element (i.e. a subgroup of the form (g) for some g ∈ G) is called cyclic. Cyclic groups (i.e. groups that are generated by a single element) are deverys abelian since in (g)= {gh: keil} we have g q J = g + J = q + q'. In the subgroup (3) < R* has two generators 3, \frac{1}{3} \ Since (3) = (\frac{1}{3}). \mathbb{R}^{\times} is not finitely generated: there is no finite list of elements $a_1, \dots, a_k \in \mathbb{R}^{\times}$ such that $\langle a_1, \dots, a_k \rangle = \mathbb{R}^{\times}$. For every finite list $a_1, \dots, a_k \in \mathbb{R}^{\times}$, the snegroup $\langle a_1, \dots, a_k \rangle < \mathbb{R}^{\times}$ is a proper subgroup (i.e. a subgroup which is a proper subset). HSG means H is a subgroup of G; H < G means H is a proper subgroup of 6. Proof of the Theorem (about orders) First suppose $g \in G$ has infinite order i.e. $g^{k} \neq 1$ for $k = 1, 2, 3, \cdots$. We must show that $|\langle g \rangle| = \infty$ where $\langle g \rangle = [g^{k}, k \in I]$ will prove that all the powers g^{k} ($k \in \mathbb{Z}$) are distinct in this case. If not, then $g^{k} = g^{k}$ for some $k, l \in \mathbb{Z}$ with $k \neq l$, then without loss of generality k < l and $l = g = g^{k} g^{k} = g^{k} g^{l} = g^{k}$, a contradiction.

In IR", the multiplicative group of nonzero real numbers,

Next suppose $ g = n$ is finite i.e. $n = a$ positive integer and $g^k \neq 1$ We will show that $\langle g \rangle = \{1, g, g^2,, g^{n-1}\}$ where these n elso above shows that $1, g, g^2,, g^{n-1}$ are distinct (otherwise $g^{k-1} = 1$ where the $\{1, 2,, n-1\}$ contrary to the assumption $ g $ for every $k \in \mathbb{Z}$. For this we use the Division Algorithm:	lments k q = q	k=1,	23,. 2 d vith	istinc 1≤	t. k<	but Th I≤	gn : R = 5	ane an	argi	enen ben	F
1-k less la E12 n-3 contrary to the assumption 19) = n	•	It .	rem	aius	10	Sho	w the	t	1 € 51,	3.97-19
g = 1 while the = 1,2, 11, colors Division Algorithm:	k =	gn+	r	when	e 9.	, r e	\mathbb{Z}_{+}	re '	30, 1, 3	ر . نام	n-13-
for every kEZ. for this we use the		L .					.,		. '. '	<i>J</i> ./	/:
Then $g^k = g^{2n+r} = (g^n)^2 g^r = 1^2 g^r = g^r \in \{1, g, g^2, \dots, g^{n-r}\}$											
N. \ 2/02/02											
Alapara 9/27/23											
In 53= {(1),(12), (13),(14), (123), (132)											
In 3- (1), (15), (15), (15), (15)											
the subset (1), (12), (13)? is not a sucreas											
It is not a grap, since multiplication is not function							•				
a binary operation of binary operation on 5 is	- : :										
For an operation *: 5, x5, -75, * (4,h) & sis											
Carelle capto as 46											
In some body, we emphasize the property g*h t S by saying "* is closed on S.											
ES by saying "*" is closed on 'S.											
-> f R->R, x+>x3											
(ah) hah							•				
3							•				

Examples of subgroups (1) < S ₃ the whole group <(12) = ((123) 7 = {(), (123), (132)} 1 S ₃ = 6 All its elements have order dividing 6 Celements have (2,3) Lacrange's theorem sings every subgroup (+2 6) (where 6 is a finite group) order of +1 ÷ order 6 (141 (6) In particular, for every a t 6, a 6 Hasse Diagram of subgrops of S ₃ (123) < (123) S _n has (2) transpositions (123) < (123) S _n has (2) transpositions (123) < (123) Change (123) Change (123) These generate S _n is (123) Change (123) Change (123) The subgrops of S ₃ (123) Change (123) Change (123) The subgrops of S ₃ (123) Change (123) The subgrops of S ₃ (123) Change (123) The subgrops of S ₃ (123) Change (123) The subgroups of S ₃ (123) Change (123) The subgrops of S ₃ (123) Change (123) The subgroups of S ₃ (123)	_	IP I I
(123) = (1), (123), (132) } 15_1=6 All its elements have order dividing 6 Celements have 1,2,3) Lagranges theorem sizes every sologous HL6 (where 6 is a finite group) order of H = Order 6 (141 161) In particular, for every a t 6, g 6 Hasse Diagram of sologops of S ₃ (1237 (CM) (133)) Son has (2) transpositions (1237 (CM) (133))		Examples of Subgroups
(123) 7 = {(), (123), (132)} 15_1=6 All its elements have order dividing 6 Celements have 1,2,3) Lagranges theorem sizes every sologous 1766 (where 6 is a finite group) order of 11: order 6 (141 161) In particular, for every at 6, a 6 Hasse Diagram of sologops of 53 (1237 (cm) (1337) (2 eyele (ij))		[{()} < S
(123) 7 = {(), (123), (132)} 15_1=6 All its elements have order dividing 6 Celements have (2,3) Lagranges theorem sizes every stagroup (466) (where 6 is a finite group) order of H: order 6 (141 161) In particular, for every a t 6, a 6 Husse Diagram of subgroups of S ₃ (1237 (cm) (13)) Son has (2) transpositions (2 eyele (ij))		the whole area
(123) 7 = {(), (123), (132)} 15_1=6 All its elements have order dividing 6 Celements have 1,2,3) Lagranges theorem sizes every sologous HL6 (where 6 is a finite group) order of H: order 6 (141 161) In particular, for every at 6, a 6 Hasse Diagram of sologops of 53 (123) ((123)) Sn has (2) transpositions (123) ((123)) Sn has (2) transpositions		111022
All its elements have order dividing 6 Celements have 1,2,3) Lagranges theorem sizes every stagroup (76 to 6) Carry 6 is a finite group) order of 1 = 0 rober 6 CHILLED In particular, for every at 6, al 161 Hosse Diagram of subgraps of 53 (1237 (CMM (13))) Son has (2) transpositions (1237 (CMM (13))) (2 eyele (ij))	_	110000 - (1) (100) 3
All its elements have order dividing 6 Celements have 1,2,3) Lagranges theorem sizes every stagroup (76 to 6) Carry 6 is a finite group) order of 1 = 0 rober 6 CHILLED In particular, for every at 6, al 161 Hosse Diagram of subgraps of 53 (1237 (CMM (13))) Son has (2) transpositions (1237 (CMM (13))) (2 eyele (ij))		$(C(123)) = \{(1), (123), (132)\}$
[aguages theorem says every storages 1766] (where 6 is a finite group) order of H: order 6 (H) (G) In particular, for every at 6, a 6 Hosse Diagram of subgraps of 53 (1237 (CM) (13)7 Sn has (2) transpositions (1237 (CM) (13)7) (2 cycle (ij))		1 02/=6
[aguages theorem says every storous 1766] (where 6 is a finite group) order of H: Order 6 [HI 161) In particular, for every at 6, a 161 Hosse Diagram of subgraps of 53 (1237 (cm) (13)7 Sn has (2) transpositions (1237 (cm) (13)7 Sq has (2) transpositions		All its elements have order dividing 6 Celements have (23)
The particles for every at 6, 1 gl 161 Hosse Diagram of subgrops of 53 (1237 (CM) (13)) Sh has (2) transpositions (2 eyele (ij))		La core Sine area character
The particles for every at 6, 1 gl 161 Hosse Diagram of subgraps of 53 (1237 (CM) (13)) Sh has (2) transpositions (2 eyele (ij))		Lagranges theorem says every soulars 1126
The particles for every at 6, 1 gl 161 Hosse Diagram of subgraps of 53 (1237 (CM) (13)) Sh has (2) transpositions (2 eyele (ij))		(where b is a finite group) order of H = Order 6
(1237 (CM) (13)) Sn has (2) transpositions (2 eyele (ij))		((H)(161)
(1237 (CM) (13)) Sn has (2) transpositions (2 eyele (ij))		In activity for every at 6 (a) (b)
(1237 (CM) (13)) Sn has (2) transpositions (2 eyele (ij))		II portion of the court of the
(1237 (CM) (13)) Sn has (2) transpositions (2 eyele (ij))		Masse Viagam Ot Subjects Of 32
(1237 (CIN) (131) (2 cycle (ij))		22 - ((2.2)
(1237 (CIM) (1311) (2 cycle (ij))		
in is generally by () these general Sn ie (M), (1),, (In) = Sn		(40/10 (1))
20 25 generales by () 11 housesoften (ij) 25/5 n (11), (15),, (1n) = 5n	•	these generale on ite
Al houseston Cijl, 25jen 2011, (17),, cini on	2V	is generally by () And (1)
	1-1	Imasosition Ciji 25ign