

Transpositions (ij) are odd permutations.
(123456789) = (19)(18)(17)(16)(15)(14)(13)(12)
A = A = A = A = A = A = A = A = A = A =
A k-cycle is a product of k-1 transpositions, tr k = are this is odd and vice versa.
A cycle of old beigth is an even permitation;
even i add
If a is a product of an even number of franspositions, then as is an even permitation.
te se a company de la company alle se company de la comp
Permitations in S_5 : Even () () () () () () () () () () () () ()
(iik) 30 and the start the s
$\begin{array}{c} (ijk) \\ (ijk) \\ (m) \\ 29 \end{array} \qquad $
$ \begin{array}{c} (ijk) \\ (ijkkm) \\ (ijkkm) \\ (ijkkm) \\ (ijkkm) \\ (ijkm) \\ ($
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

A permitation $x \in S_n$ can be expressed as a product of transpositions.
If a is a product of an even number of import, add.
In s_3 : (13)(12)(13)(23)(23)(23)(12)(23) = (123) says (123) is an even permitation.
S ₃ ≃ < [° 1] , [° 1]) ≃ dihedral group of order 6 (symmetry group of an equilatoral triangle) 2
Groups of order 2
$S_2 \cong \{0, 1\} \mod 2 \cong \langle -1 \rangle$ under multiplication $5 = 1$ under addition $6 = 2$
• $1()$ (12) + 10 1 + 1 - 1 2 has a cyclic 8 5
() () (12) 0 0 1 1 1 -1 C symmetry good of order 7
(12) (12) () 1/10 -11-11 has an abelian symmetry group
of order 4 which is not ajclic
(the Rlein four-group)
all pole the second order tare isomorphic then are cyclic of order p.
cheorem Any two groups of prime receipting is a strangenter

Eq. $\mathbb{Z}_{15\mathbb{Z}} = \{0, 1, 2\}$ (under addition mod 3) is isomorphic to $A_3 = \langle (123) \rangle = \{(1, 23), (123), (132)\}$ 10 12 0 1(1) (123) (132) and $\{1, w, w\}$ under multiplication, $w = \frac{1}{14}$ • () (123) (132) () () (123) (132) = e^{211/3} (123) (123) (132) (1)(132) (132) (1) (123)1 1 W W2 w w w We say two groups 6, H are isomorphic $(G \cong H)$ if there exists a bijection $\phi: G \longrightarrow H$ such that $\phi(x_0) = \phi(x)\phi(y)$ G = H operation $\phi: G \longrightarrow H$ such that $\phi(x_0) = \phi(x)\phi(y)$ G = H operation $f = f(x)\phi(y)$ in G in H\$(xy) \$(xy) morphism of: Zy -> Az is a bijection satisfying $\phi(x+y) = \phi(x) \circ \phi(y)$ An isomorphism $\phi: \mathbb{R} \longrightarrow (0, \infty)$, $\phi(x+y) = \phi(x)\phi(y)$ is defined by $\phi(x) = e^x$ under under $e^{x+y} = e^{x} \cdot e^{y}$. addition multiplication $(subgroup of R = (-\infty, 0) \cup (0, \infty))$ $\mathbb{R} \not\cong \mathbb{R}^{2}$ $l_n = \phi': (o, a) \longrightarrow \mathbb{R}$ since R (reels under addition) has only one element of finite order whereas R* has two elements of finite order: ±1.

is isomorphic to a b c a $\phi(0) = c + \frac{1}{c} \phi(1) = a + \frac{1}{c} \phi(1) = b + b$ $\varphi(0) = c \quad \frac{x}{c} \quad \frac{c}{b} \quad \frac{b}{b} \quad a$ 2/37 (trivial group ?13) Every group of order 1 is isomorphic to · 2/22 + 0 1 be then multiply both sides by \vec{c} on the right to get $(ac)\vec{c}' = (bc)\vec{c}'$ $a(c\vec{c}') = b(c\vec{c}')$ e e a b Every group of order 3 a = b a a b e is cyclic (isomorphic to \$\frac{2}{32}\$ under addition).

e e a a a e b b c c c b Two cases Theorem: -Re cyclic	b c Klein c b c form c b c form e a a e either all a There are e = group of or	e e e b b com-identify c clements of G kaitly two gr	a lo c a b c b c e c e a c e a b have order oups of order	Cyclic group of order 4 2, or 6 4 up to	has an elime Fromorphism	nt not of orden : the Klein for	2. M-group	and a second and a second a se
e a e e a a a b b b c c c d d d e Theore if has order 2	b c d b c d e c d e d e a e a b c a b c nonides every elemen then G	yclic group of order 5 (a) = ie, a (ity t of a group (is abelian.	a^{2}, a^{3}, a^{4}	e a $e e a$ $a a e$ $b b c$ $c c d$ $d b$ $c is a beff$ $for b (cb = e$ $a right inve$ $(bc = a)$	b c d b c d c d b d a e e b a a e c invouse e) but not rse - b	is not a group It is a quasin in fact since an identity e (its Cayley square: each a permutation This loop is	! stable is a how/cod of e, a, b, cod s not ass	a Goop Lotin Rum is id).
E_{1000} (Note Let $x, y \in G$ $yx = \chi(xy) \times \chi)$ x = y	x = e = 10 $x = rey = 2$ $x = rey = 2$	$y^{2} = xyxy = e$ $y^{2} = xyxy = e$ $y^{2} = 1$	$y = 0. f$ y_{30} $y_{50} = x$	Aor D x	€ € .	eg. (ca)d ≈ d c (ad) = c	d = c -b = e	

	Sl	voe-	Se	ock	1	Leore	<u>en</u>				,
• •	[n	e	ver	9	gro	np (; ;	for a	;ye	G we have (xy) = y'x',	
• •				יש ל	th i	dentih	j k j				
• •	Pre	rt -	(yx	')(xy)	<u>-</u>	y 1 g	j =	1 and $(\pi y)(y'x') = 1$.	
Wa	rr	เกล		()	'y 5'	\$ 7	7 -1 1 4	Ín	gen	eral.	
		J					J				
• •	 . 4	e.	 . Cr.	6	C	· · ·				Write the rows of the Cayley table as permitations of e, a, b, C ;	
	e.	ک	a	-6-	ć	Kle	w		• •	E(1) (12)(34) (13)(24) (14)(23)} is a Klein bout group	
	a	a	e	C	6		M - G 0	mp .		Eller a share of Second	
	.6	6	. C.	le l	a					as a motion of	
• •		С	ط ·	-α		• • •					
	•	e	· a ·	6	C	 Cu	dic	mou		Gives {(), (1239) (13)(24), (1732) } as a subgroup	
	e	e	a b	b	د و	ð	orde	24 1		$\mathcal{F}_{\mathcal{F}}$	
• •	Ь	Ŀ	c	e	a					The Destates The Destates and the second sec	
	1C 1	С	÷.	• •	. b					(beover (Cayley representation incover)	
• •	• •	•		• •						Every finite group ais isomorphic is	
										where $n = (61)$.	
	• •	•		• •						By the way, every finite group 6 is also isomorphic to	
										a group of matrices under multiplication	
	• •	•		• •						· · · · · · · · · · · · · · · · · · ·	
									0 0		

ti	IF & is a finite group of order , then every element g = G has order dividing n.
	(If ge G a then Ig [[n .]) a second a se
	Eq. S4 has elements of order 1,2,3,4. These orders of elements divide S4[= 24.
	S5 has elements of order 1,2,3,4,5,6 (divisors of 1551 = 120).
-	front in the general case this follows from a later theorem, they anglis (never
•	proved the result for cyclic groups.)
•	Consider the product of all the group dements at = gigigs g. where G = 2gi, gz,, g. 3, g. = 1.
	Note: since G is abelian, IT is well defined; it doesn't depend on what order we list the
•	coments $g_1, \dots, g_n \in G$. Fick $a \in G$. (>o $a \in Zg_1, \dots, g_n \}$.) The elements ag_1, ag_2, \dots, g'_n
•	$(a_{q_{1}})(a_{q_{2}})(a_{q_{3}})\cdots(a_{q_{n}})=\pi = a^{n}g_{i}g_{2}\cdots g_{n} = q^{n}\pi$
	So an = 1 and k= la/ must divide n.
•	Lagrange's theorem If G is any finite group of order n, and H = G (i.e. H is a subgroup of G) the 1411 n
•	This generalizes the previous statement: if gE & then by Lagrange's Theorem, Kg>1 [6]
2g.	$ A_{4} = \frac{1}{2} S_{4} = 12$, $A_{4} = \{(), (123), (124), (132), (134), (142), (143), (243), (243), (12)(24), (13)(24), (1$
	The symmetry group of a regular tetrahedron 1 is isomorphic to Sq.
•	The rotational symmetry group of the regular z tetrahedron (the direct isometry group, consisting of those symmetrics that preserve orientation) is isomorphic to A
	· · · · · · · · · · · · · · · · · · ·

$A_{q} = \begin{cases} (1), (123), (124), (132), (134), (142), (143), (234), (243), (12)(34), (13)(24), (14)(23) \end{cases}$ Subgroups of Aq have order 1,2,3,4. Elements of Aq have order 1,2,3,4. Divisors of $ A_{q} =12$ are 1,2,3,4,6,12. $\mathcal{L}(243), (12)(34) > = \{(1), (243), (12)(34), (234), (142), (124), \dots \} = A_{q}.$	•
(243)(12)(34) = (142) $\{(1), (12)(34), (13)(24), (14)(23)\}$ is the Klein four-grap, a subgroup of A4.	•
Question: How many subgroups of Z are there containing 4? (Note: Z is an additive group.) Z = {, -3, -2, -1, 0, 1, 2, 3, 4, 5, } Auswor: There are three subgroups of Z containing 4, namely Z, 2Z, 4Z. 2Z = {, -6, -4, -2, 0, 2, 4, 6, 8, } 4Z = {, -8, -4, 0, 4, 8, 12, } -4Z = {, -8, -4, 0, 4, 8, 12, } There are infinitely subgroups are infinite. -4Z = {, -8, -4, 0, 4, 8, 12, } There are infinitely many subgroups of Z containing 4 but not infinitely many subgroups of Z containing 4 but not infinitely are generated by powers 4. of the generator of G.	2 2 2

Eq. $G = \langle q \rangle$ where $ q = \infty$ i.e. $ G = \langle q \rangle = q = \infty$.
= $\{\ldots, \tilde{g}^3, \tilde{g}^2, \tilde{g}^\prime, 1, g, g^2, g^3, \ldots\}$ with no repeats. $\langle g^2, g^{\prime 0} \rangle$
1 is the identity Lat's <q2> 1-4</q2>
g'g' = g'f' = g'g'
How many subgroups of G = <g> contain g'? (Utel: <g>, <g>, <g'>.</g'></g></g></g>
$G = \{ \dots, \bar{g}, \bar{g}, \bar{g}, \bar{g}, \bar{g}, g^{2}, g^{3}, g^{4}, \dots \}$ $\langle a^{6} a^{6} \rangle < \langle a^{2} \rangle$
$\langle g^2 \rangle = \{ \dots, g^6, g^7, g^{-2}, (g^7, g^6, g^6, \dots \} \}$
$\langle g^{4} \rangle = \{ \dots, g^{8}, g^{4}, 1, g^{4}, g^{8}, g^{2}, \dots \}$ Since $g^{2} = (g^{6})^{2} (g^{6})^{-1}$
$G \cong \mathbb{Z}$ $(q^2) = \langle q^0, q^{10} \rangle$
multiplicative additive $\phi(i) = g'$
Gene group. I i O I i i i i i i i i i i i i i i i i
Theorem If G is a group of even order, then G has an element of order 2 (i.e. at least
one dement of order 2) Note: 6 is not necessarily abelian.
Proof Pair up each group element with its inverse giving pairs (g, g (for gEG.
Note that g= g the g having size 1 or 2. If G has no elements of order 2 then we have
partitioned a set G of even cardinality into one subset \$13 of size 1, and a collection of pairs
₹3, g'3 of size 2, a contradiction.

what we actually showed is that in a group of even order, the number of elements of order 2
is odd. (In a group of odd order, there are no elements of order 2 although we haven't proved this unt except in the abelian case.)
Eq. Direct Products: Given groups GH (say, multiplicative) we form the direct product of
G and H as $G \times H = \{(g, h) : g \in G, h \in H \}$ (the cartesian product of the sets G and H)
which becomes a group under coordinateurse multiplication i.e.
and coordinate voise inverses i.e. $(g,h)' = (\overline{g}',h'')$
and the coordinatewise identify $1 \in G \times H$ is $1 = 1 = (1_G, 1_H)$. or $e_{G, H} = (e_G, e_H)$.
Eq. $\mathbb{Z}_{12\mathbb{Z}} = \{0, 1\}$ under addition and $2 + [0] = 0$
$\mathbb{Z}_{211} \times \mathbb{Z}_{211} = \{(x, y) : x, y \in \mathbb{Z}_{212}\} = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$
(x, y) + (x', y') = (x + x', y + y'). The identity $0 = (0, 0)$.
This is the Klein town-group since it has s elements of orally 2.
Note: Many books write Z, in place of 4/2Z GxH = H×G
If $ G =m$ and $ H =n$ then $ G \times H =mn$. $\varphi: G \times H \longrightarrow H \times G$
If G and H are abelian then So is $G \times H$. In fact, the converse holds: G and H are both abelian, it? $G \times H$ is abelian. isomorphism.

Gr H has a subgroup $G \times \{I_{H}\} = \{(g, I_{H}) : g \in G$ An isomorphism $G \times \{I_{H}\} \longrightarrow G$ is given	$\begin{cases} \stackrel{\sim}{=} & \mathcal{G} \\ \stackrel{\scriptstyle}{=} & (g, I_{H}) & \longrightarrow g \end{cases}$
Likewise, GXH has a subgroup \$1, 3×H	$f \stackrel{i}{\rightleftharpoons} \stackrel{i}{\rightleftharpoons} H$
$(g, I_{\mu})(I_{c}, h) = (g, h) = (I_{c}, h)(g, I_{\mu})$	
$\mathcal{C} \times (\mathcal{I}_{H}) \times \mathcal{C} \mathcal{I}_{G} \times \mathcal{C}$	· · · · · · · · · · · · · · · · · · ·
$\mathcal{P} \times \mathcal{T}$	· · · · · · · · · · · · · · · · · · ·
Eq. IR = (-00,0) (0,00) = IN 727 multiplicative group additive additive	
Au isomooplism of: R* -> R × Z/22 is	$\phi(a) = \zeta'(\ln a , 0)$ if $a > 0$
It's easy to see that ϕ is one-to-one and onto. We show that $\phi(ab) = \phi(a) + \phi(b)$ for all $a, b \in \mathbb{R}^*$.	$\left((ln [a], 1) \text{if } a < 0 \right)$
We argue in four cases. It 9,670 then $\phi(ab) = (ln ab , 0)$ since $db > 0$	
$= (lu a + lu(b , 0) = (lu a , 0) + (lu b , 0) = \phi(a) + $	\$(6) If a,b<0 then do>0 so
$ \varphi(ab) = (ln ab1, 1) = (ln a1, 0) + (ln b1, 1) = \varphi(a) + \varphi(b) $ Similarly if $q < 0 < b$.	$\phi(ab) = (hu ab1, 0) = (hu a1, 1) + (hu b1, 1)$ = $\phi(a) + \phi(b)$

Every cyclic group is abalian. Not every abelian group is a direct product of cyclic groups.	
eq. the Kkin focus-group is a direct product of two groups of order 2 1.8. 4/27 #1/27	
There are five groups of order 8 up to isomorphism:	
Z/8Z (cyclic) State 2 7/1 1 7/1 3	
$Z_{274} \times Z_{472} = \{(a,b): 2e L_{272}, be L_{472}\}$	
Z/274 × Z/27 × Z/22 = 3 (a,b,c): 4,0, c ∈ Z/27 5 under addrive	
dihedral group of order 8 ~ symmetry group of square, Da (sometimes D8)	
quaternion group of order 8 & or ug	
$Q = \{1, -1, 1, -1, k, -k\} \{1, -1, k, -k\} \{1, -1, k, -k\}$	
order 2 ki=j, ik=j	
for any field F &g. R, C, Q) GLn(F) = { invertible nxn metrices over F j is having empres in F.	
Also $t = \pi_3 - \{0, 1, 2\}$ works with addition mod 3. $z + z = 1 = z + z$	
$\Gamma_{\rm e} = \int \rho_{12} \dots \rho_{3}^{2} + \frac{1}{2} \sigma_{3}^{2}$	•
$\mathbb{P} \sim \{ \mathbb{P} \mid 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1$	
(1) (1) - E motile 2x2 metrices over #3? is a group of order 48.	
$SL_2(\mathbb{P}_3) = [modelle = 1]$ $CL(\mathbb{P}_3) = [modelle = 1]$ $CL(\mathbb{P}_3) = [modelle = 1]$ $CL(\mathbb{P}_3) = [modelle = 1]$	
$GL_{2}(R) - (mverticle 2x2 metricles once R) - (led 1 - a_{i}e_{i}e_{i}e_{i} - e_{i}e_{i}e_{i}e_{i}e_{i}e_{i}e_{i}e_{i}$	
G(n (F) = { invertible non matrices over t- } = general linear group of algree nonce F	
	0

$SL_n(F)$ is the special linear group of degree n over F ; $SL_n(F) \leq GL_n(F)$ or $SL(n,F)$ $SL_n(F) \simeq \xi_{n\times n}$ matrices over F having determinant 1 ξ .
If F= Fp = {0,1,2,, p-3 mod p (field of prine order p) then we can count elements in GL (FF) or SL (Fp). (For 2x2 matrix over Fz, 33 matrices have let A = 0, 24 matrices have det A = 1, det A = 2).
(GL_(H3)]= 48. The number of 2×2 matrices over H3 = 30, 123 is 81. How many of them are invertible? We count invertible metrices [a b], abjc, d E F = H3 with linearly independent alumns.
There are <u>b</u> choices to the first column [i] \$ [0]. 9-3=6 Having chosen the first column [c], there are <u>b</u> choices for the second column [d] which are not a scalar multiple of the first column. So $(6L_2(F_3)) = 8 \times 6 = 48$.
In fact, for A & 6L2(F), F= The there are 29 choices with determinant 1, and 29 choices with determinant 1, and 29 choices with determinant -1=2.
[GL_(IFp)] = (p-1)(p-p)(p-p) (p-p) no. of choices of first cheme of second cheme last column
(GL_(FF)) = (p ² -1)(p ² -p) for A ∈ GL (FF), dot A ∈ {1,2,, pi} and there equally many matrices with each possible non-zero tata minut is 512 and 5
$(SL_n(\mathbb{F}_p)) = \frac{1}{p-r} (GL_n(\mathbb{F}_p)). \text{We'll explain later.}$

For any group 6, the center of 6 15 Z.(G) = & all elements in a which commute with everyten
0 0 Batrum (not Z = {ZEG: ZX = XZ for all XEGZ)
Eq. if 6 is the symmetry group of a square (a dihedral group of order 8) then [Z(G)]= 2
and Z(G) consists of the identity and the halt-that (180 routine 3)
If we represent 6 using permitations on the vertices 1,2,3,4 then 4
$G = \{ (), (1234), (13)(24), (1432), (12)(34), (14)(23), (13), (24) \}$
then $Z(G) = \langle (13)(24) \rangle = \{ (), (13)(24) \}$
Atternatively. G can be represented as a subgroup of GL_(IR):
$G = \{ [[0]], [0], [0], [0], [0], [0], [0], [0], [0]], [0] \} \}$
$Z(G) = \left\langle \begin{bmatrix} -i & 0 \\ 0 & -i \end{bmatrix} \right\rangle = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & i \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & -i \end{bmatrix} \right\rangle$
In general, $Z(G) \leq G$ (a subgroup of G) 7(G) = G if G is abolian.
For many groups, $Z(G) = \{1\}$ identify eg , $Z(S_3) = \{()\}$ $e = identify of G$
Theorem If G is a group and $z \in G$, then $Z(G) \leq G$ (the center of G is a subgroup of G).
Poor Since eg = g = g = for every g \in G, e \in Z(G). If Z, Z' (Z) f) then
(zz')g = z(z'q) = z(qz') = (zq)z' = (qz)z' = g(zz')
So $zz' \in \mathbb{Z}(G)$. Also if $z \in \mathbb{Z}(G)$ then to every $q \in G$ we have $zg = gz$ so $zg = z(gz)z = gz$
s_{σ} $z \in \mathcal{I}(G)$.

let SSG. The centralizer of S in G is C _c (S) = the set all all elements of G commenting 1	with every
element of S, i.e. C _G (S) = {g \in G : gs = sg for all s \in S}.	
eq. $C_{\mathcal{G}}(e) = G$, $C_{\mathcal{G}}(G) = Z(G)$. If $z \in Z(G)$ then $C_{\mathcal{G}}(z) = G$.	
$I_{n} S_{4}, C_{S_{4}}((12)) = \{(1), (34), (12), (12)(34)\}$	
In general, (G(S) < G (the centrelizer of a subset of G is always a subgroup of G). The proof of this is virtually identical to the proof above; just quantify over ges rather	tan ge G.
IF G= GL (F) = invertible non matrices over F, then Z(G) = { hI : h=0 in F}	
$I = I_n = nxn$ identify	matrix.
[12] + [12] = [12] + 2(GL(R))	
$\begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$	
1 5 10 -i-fl. à] e c. (Iticie + de al motrix obtained from	
let Eijla) - [1] for i = j. (1415 is the elementary matrix by adding an a in the (i,j) position.)	
If $A = [a_{ij} : i \leq i_{j} \leq n] \in \mathbb{Z}(GL_{(F)})$ then $A \in \mathbb{F}_{ij}(I) = \mathbb{F}_{ij}(I) A$ so $a_{ij} = 0$. So A is	diagonal.
Contrance using other elementary matrices to such all .	matrices,
$G = GL_{R}(t)$ is generated by elemetricity matrices so $A = 2107$ in T	
(G) nugert be provad og s?	

Another construction of subgroups: Suppose $G \leq S_n$. So G permites $[n] = \{1, 2, ..., n\}$ The stabilizer of a point $x \in [n]$ is $Stab_G(x) = \{g \in G : g(x) = x\} \leq G$. The symmetry group of a regular pentagon is a group G which is dihedral of order to 2 (sometimes denoted Ds or Dio). Eq. $G = \{(), (12345), (13524), (14253), (15932), (12)(35), (13)(45), (14)(23), (15)(24), (25)(34)\}$ 5 vetlections 5 volations G = S parmiting [5] = {1,2,3,4,5} the five vertices. $()(\mathbf{x}) = \mathbf{x}$ If $g,h \in Stab_{G}(x)$ then $Stab_{c}(3) = \{(1), (15)(24)\}$ (gh)(x) = g(h(x)) = g(x) = xIf g \in Stalog(x) then g(x) = x so $x = g'(g(x)) = \ddot{g}(x)$ so $\ddot{g} \in State_{c}(x)$

Elements of order 2 in a group are called involutions.
If G is abelian then the product of any two involutions in G well of the wise about 1 (ab)=1 so ale is an
$(ab)^2 = abab = a^2b^2 = \cdot = $ so $(ab) = (or 2)$. If $ab = 1$ then $b = a$, there is a first involutions in (approximate a
involution so {1, a, b, ab } is a Klein four-subgroup of G. Aay too distinct more an abdian group
Klein four subanny (12)(13) = (132) in S.
How many involutions can a finite abelian group, have .
re a losa la involutions then every involution lies in exactly 2 Klein tour-subgroup
I Grow 2 mouth and the choothe?
How many Klein tour sugroups was & have an office
(out subgroups of the form < a, b) = {1, a, b, ab } where a, b ∈ G are distinct involution
K Chierces the
E-1. Choices
k (k-1) is the number of Klein four-subgroups in G.
1) A 1 7 10 in have 7 involutions 7 Klein four-subgroups,
(-1, [1] It k= + then the S Klein Ren-groups, every Klein your group has 3 involutions.
(-1 (-1)) (-(-(-1)))
In a direct product of three groups of order two eg (+1> × (-1) × (-1)
$(1-1) = \{(1-1)\} = \{(1-1)\}$
$(x, y, z) : \pi, y, z \in (-1)$ $(x, y, z) : \pi, y, z \in (-1)$
Containly h= 1 ~ 3 mol 6
· · · · · · · · · · · · · · · · · · ·

In general if 4,6 are distinct in plations in a group G then shat can they generate?
The symmetry group of an infinite string TTTTT. is generated by two reflections a, b in vertical axes I, I as shown
ab is a translation (shift) one step to the right ba is a translation one step to the left. R
<ab> = {,baba, ba, 1, ab, abab, ababab, } is an intimite cyclic group, a subgroup of 1903 <a,6> itself is an infinite dihedral group.</a,6></ab>
The symmetry group of a square is a dihedral group < R, R'> generated by two reflections
$\{R'_{F} \in I, R, R', RR', RR'R, R'RR', RR'RR'\}$
Comments on HWZ: Pocall is chose we used the product TT of elements in a finite abelian group.
#SIQ) Show that It has order = 2. Proof If G = Eq. 92 92 is abalian of order n then IT = 9.929n = 9.929n so
T'= (gigkgh) (gig gi) = e (the identity element of G).

Eq. G is cyclic of order 4. In multiplicative notation, $G = \langle g \rangle = \{1, g, g^2, g^3\}$ where $g^4 = 1$; $\pi = 1 \cdot g \cdot g^2 \cdot g^3 = g^2$ of order 2. In additive notation, $G = \mathbb{Z}/4\mathbb{Z} = \{0, 1, 2, 3\} = \langle 1 \rangle$; $\pi = 0 + 1 + 2 + 3 = 2$ of order 2. O is the identity. In S_4 , $G = \langle (1234) \rangle \leq S_4$, $\pi = ()o(1234) \cdot 6(13)(24) \cdot o(1432) = (15)(24)$. of order 2.
$\lim_{\substack{x \to \infty}} \frac{\sin x}{x} = 0, \qquad \lim_{\substack{x \to \infty}} \frac{\sin x}{z} = 0 \text{is problematic in its unorthodox choice of versiable } x \to \infty.$
$G = SL_2(\mathbb{F}_3) = \{2 \times 2 \text{ motrices of } \mathbb{F}_3 \text{ having determinant } 3 \} [G] = 24.$ Is $G \cong S_4$? G as only one involution whereas S_4 has 9 involutions. (An involution in any group element of $IF = SL_2(\mathbb{R})$ or $SL_2(\mathbb{C})$ then G has only one involution, $[0 - 1] = -J$. $GL_2(\mathbb{R})$ has many involutions.
Does 64: (R) have an element of order 11? Yes; in fact lg. [01] is a reflection in the yaxis.
$SL_{2}(\mathbb{R})$ does: $\begin{bmatrix} \cos^{2\pi} & -\sin^{2\pi} \\ \sin^{2\pi} & \cos^{2\pi} \end{bmatrix} \in SL_{2}(\mathbb{R})$ $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta \end{bmatrix} \in SL_{2}(\mathbb{R})$ has determinant -1.
A is a reflection obly involution in SL2(R)? (Infinitely many involutions in GL2(R).)
· · · · · · · · · · · · · · · · · · ·