

A matrix in GL2(IR) is conjugate to [0-1] IR it has trace 0 and determinant -1.
If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2(\mathbb{R})$ then A has characteristic polynomial $f(x) = det(xI-A) = det(\begin{bmatrix} x & o \\ o & x \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix})$
$= \begin{vmatrix} x-a & -b \\ -c & x-d \end{vmatrix} = (x-a)(x-d) - bc = x^{2} - (a+d)x + (ad-bc)$ $+A det A Some books define the characteristic polynomial Cayley Hamilton Theorem (look it up in any linear algebra book) of A as det(A - xI) = (-i)^{n} det(xI - A)If f(x) is the characteristic polynomial of an nxn matrix A, then f(A) = 0.$
In the 2×2 case, $A^2 - (4rA)A + (dotA)I = 0$ holds as we compute here: $A^2 = \begin{bmatrix} a & 6 \\ c & d \end{bmatrix} \begin{bmatrix} a & b_1 \\ c & d \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+bd \\ ac+cd & bc+d^2 \end{bmatrix}$ $A^2 - (4rA)A + (dotA)I = \begin{bmatrix} a^2+bc & ab+bd \\ ac+cd & bc+d^2 \end{bmatrix} - (a+d)\begin{bmatrix} a & b_1 \\ c & d \end{bmatrix} + (ad-bc)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a^2+bc - (a+d)bc + d^2 \\ ac+cd - (a+d)c & bc+d^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
If $A \in GL_2(\mathbb{R})$ has trace 0 and determinant -1 then it satisfies $A^2 - 0A - 1I = 0$ so $A^2 = I$ so in the group $GL_2(\mathbb{R})$, A has order too 2. (tr $I = 2$, not 0) f(x) = det(xI - A) may or may not be the smallest degree polynomial that has A as a root. The minimal polynomial of A, $m(x)$, is the monic polynomial of smallest degree satisfying $m(A) = 0$. Facts (see a linear algebra book):
Roots of $f(x)$ are eigenvalues of A. m(x) divides $f(x)$ i.e. $f(x) = h(x) m(x)$ for some monic polynomial $h(x)$ (often $h(x)=1$, $m(x)=f(x)$). Every eigenvalue of A is a root of $m(x)$.

Theorem let A & GL_ (R). Then the following are equivalent:	
(i) + A = 0, dat A = -1	
(ii) A has order 2 but $A^{+} - 1$	
(iii) A is conjugate to [0-1] Je have proved (i) => (ii). And (iii) => (i) is easy. Assume A = M[0] M ⁻¹ for some MEGL(R)	
Then $+A = +(M[b^{\circ}]M) = +(MM[b^{\circ}]) = +[b^{\circ}] = 0$.	≪~~~~/)
tr AB = tr BA if A is mixin, B is nixin (Short proof: see linear algebra. Both equal to g	
$det A = det M det \begin{bmatrix} i & 0 \\ 0 & -1 \end{bmatrix} det M = -1$	
MM ^T =I	
$det (M)det (M^{-1}) = det I = I$	
Ydet M If A has order 2 then A= + A is a root of x-1	= (x+1)(x-1)
s the minimal poly. of A divides g? 1: m(x) = x? 1 or x+1 or x1 or 1.	
If $m(r) = 1$ then $m(A) = I = 0$. No!. A T (Ab! T has order 1 not order 2)	• • • • •
If $m(x) = x_{-1}$ then $m(A) = A - I = D$ then $A = I$ (100. I accounting)	
If $m(x) = x+1$ then $m(A) \doteq A + I = 0$ so $A = -1$ (NO. up as properly) $A = -1, \Rightarrow (i)$ holds	
So m(x) = x -1 divises sur, is in the eigenvectors corresponding to 1,-1 i.e. Au=u, Av So ±1 are eigenvalues of A. Let u, v be eigenvectors corresponding to 1,-1 i.e. Au=u, Av	= -V.
Let M = [u v] (2x2 metrix having 4, v es columne)	
$AM = \begin{bmatrix} Au \\ Av \end{bmatrix} = \begin{bmatrix} u \\ -v \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = M \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \implies A = M \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} M^{T} i.e. (iii) holds.$	

There are two conjugacy classes of doments of order 2 in 6=GL_(R):
• $\xi - I = \begin{bmatrix} i & i \\ 0 & -1 \end{bmatrix}$ is in a class by itseff since $-I \in Z(G)$
All matrices conjugate to ['] i.e. all matrices with trace O and determinant -1.
$\frac{1}{2} = \frac{1}{2} = \frac{1}$
Consider the dihedral group G of order & (the symmetry group of a square) so (GI = 8. Let's sick generators r, y for G where x is an element of order 4 and y is a reflection (order 2).
$G = \{1, x_1, x_2^2, x_3^3, y_1, x_2^2, x_3^2, y_1^2, y_2^2, x_3^2, y_1^2, y_2^2, x_3^2, y_1^2, x_3^2, y_1^2, x_3^2, y_1^2, y_1$
$x^{i}x^{j} = x^{ij}$ $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1$
x' x' = x' y) If you more g past x, $(J'' g'' g'' g'' g'' g'' g'' g'' g'' g''$
$x'y \cdot x' = x'y$ it reverts $x' = x'$ $(yxy)'$
teres x ⁱ y. x ^j y = x ⁱ j − teres
Presentation for G: G = $\langle x, y \rangle$: $x^{\dagger} = y^{2} = 1$, $yx = x^{2}y^{2}$
generators relations 2: y = 1 y
$g = \frac{1}{2} $
x_{ij} . $x_{ij} = x^{-1}y$
$\begin{cases} x & 4 \\ x^3 $
$\begin{bmatrix} x^2 & 2 & G, \\ G & = 8 \end{bmatrix}$ $\begin{bmatrix} (y) = \{1, x^2, y, x^2, y\} \end{bmatrix}$
$\begin{array}{cccc} q & y & z & \langle x, y \rangle & \langle \langle x, y \rangle = 1 \\ \end{array} \qquad \qquad$
$(x_{ij} \leftarrow x_{ij}) = (x_{ij}) = (y_{ij}) = $
$\begin{cases} \frac{1}{3} $
TP 1012 5 the conjugance class of a fr 10(0) 1 (a) to 1
It old is in a land and a geo man logil (gi) = [61. eg 1×8-8

Cosets and lagrange's Theorem
TP 11 is a subsect of G (untiplicative, at least generically) then a coset of H in G is a
subset of the for all = 2 ah : he H ?. Note: gH G , not a subgroup in general.
En taken HE Zant in G = S. List all cosets of H in G. There are exactly three cosets of H in G.
$H_{13}H_{1$
() H = () (), (12)3 = ((), (12)3) (F is partitioned into three cosets, each of size 2.
$(12)H = (12) \{(1, (12)\} = \{(1), (12)\} \}$
(13) H = (13) (1, (12)) = ((13), (123)) (123)
(23) H - (25) ((1), (12)) - ((25)) ((52))
$(123) H = (123) \{ (1, (12) \} = \{ (123), (13) \}^{2} $ (1)
$(132)H = (132)\{(), (12)\} = \{(132), (23)\} = (Kecall: (Ke$
of a without any overlap.)
The next of a culture HSG pertition the dements of G
Theorem the cosets att and bit overlap of (since e = H). Suppose two cosets att and bit overlap
HOLL a as at = lh for some h, hz EH, so att = gh, H = gH TE hEH He
i.e. $g \in att(16t1 > 6 g = uni = on c$ ($a = ak^{-1}$ and $b = ak^{-1}$) and $b = gk_2 H = gk_1 - f(b = h_1 + h_1 + h_2 + h_2$
f(a - gh) = f(a
(weden fit were of the fit of th
Proof A bijection H -> gtt is given by h -> gh. An inverse map given by
is given by $x \mapsto g'x$.
As a corollary, we obtain lagrange's Theorem: $ G = (no. of cosets of H in G) \times (size of each coset)$
the index of H in G [H]
$(denoted [G:H] H) \qquad (denoted [G:H])$

Eq. In Sa. the set of all even permitations is a subgroup An. The set of all odd permitations is a coset of A	(n≥2)
So has two cosets of An: () An = An = Seven per mutations ? (12) An = 2 add permutations?	· · · · · · · · · · · · · · · · · · ·
$ S_n = n! = [S_n : A] (A_n)$	
T the addition around of R ³ , a line through the onigin is a subgro	της
A coset of this line lis a line parallel to the original line. The parallel lines to I give a profition of R ³ .	
Eq. $G = S_n$ is partitioned into cosets of $H = G_1 \cong S_{n-1} = \begin{cases} permutions of 2, 3,, n \\ G = G + U = G + U = U \\ \end{pmatrix}$	while fixing 1 ?
eq $\sigma_{i} = ()$, $\sigma_{z} = (i2)$, $\sigma_{z} = (i3)$,, $\sigma_{n} = (in)$ $\sigma_{k} H = Sall \sigma \in G : \sigma(i) = k $	· J · · · · · · · · · · · · · · · · · ·
Proof If $\sigma \in G$, $\sigma(i) = k$ then $\sigma' \sigma_k(i) = \sigma'(k) = i$ so $\sigma' \sigma_k \in H = G_i$ so	$\sigma'\sigma_k H = H so \sigma_k H = \sigma H$.
H = (n-i)!, $[G:H] = n$, $ G = H [G:H]n! = (n-i)! * n$	

Left cosets vs. Right cosets of HSG	Fo G= So	$H = S_{a} = G_{a}$
Left cosets $gH = \{gh : h \in H\}$, $g \in G$		
Right cosets Hg = {hg : h€ H }	Left cosets	(12) (132) (23)
[G:H] = index of H in G = complex of left orgets of H in G	Right cosets	() (13) (12)
= unmber of right cosets of H in G	G = {	reG: o(k)=k}
All cosets of H in G have size $ qH = Hq = H .$	\$	abilizer of G
If G is abelian, then $gH = Hg$. We say $H \leq G$ is <u>normal</u> if $gH = Hg$ for all $g \in G$ (left and right cosets are the same). Eg. $G = S_4$, $K = \langle (12)(34), (13)(24) \rangle = \{(1, (12)(34), (13)(24), (14)(23)\}$ is a Klein four-subgroup of G.	$H = \{(), (rz)\}$ $H() = \{(), (rz)\}$ $H(rz) = \{(), (rz)\}$	
Proof IF g G and kek then gkg eK so gKg CK. (gKg = so gKg g C Kg ie. gK C Kg. Similarly, gK 2 Kg	= {gkg': ke K} so gK = Kg. : conjugate of H.) \Box (conjugating by $g \in G$)
Proof Given $h_1, h_2 \in H$ so $gh, \overline{g}', gh, \overline{g}' \in gH\overline{g}'$, we have $(gh, \overline{g}')(gh, \overline{g}')$ so $e \in H$ and $geg' = e \in gH\overline{g}'$. Also if $h \in H$, so $gh\overline{g}' \in gH\overline{g}'$.	= $g h h g \in g H g$ then $(g h g')' =$	Take $e \in G$ as the identity, $gh'g' \in gHg'$.

• •
eG-
• •
• •
• •
• •
• •
• •
• •
• •
•

theoren	n Every	Conjega	y clas	ss in	G ha	S Size	Card	i naloty	$) \alpha v \alpha$	king I	- !.	• •			• •			
	· · · · · · ·			classe	s {){ }	Sliz) (3A) (3)/24)	(14)(2)	s){	5(12-	9) (132)	(14	3) (2	34)	2 1 1
. 5 9 A	ty need in	line line	garg			~??.	ζ		· · · ·)
{ (14)	٤), (123),	(134), (2	=15) {	•								•••						
								 (12.2)	(10)(24)	(120) =	(-1)	 	(13)	(24)				
Q	123) (12)(34	1) (123)		23)(14)= (1	4)(23);;	((32)	(12)(54)	(152) -		24) -			•			
		(132)										• •				• • •	••••	• •
(12	28)(124)((123) =	(23*	1)														
	5 (124)) is Gene	ingato	40 (K42)	since	they	have .	the sa	me Cy	cle H	ructu	re:					
			19,00															
(24)(12	2 4)(24)	= (142)	• • •							• • •		• •	• • •	• • •	• •			• •
			1 C C C C C C C C C C C C C C C C C C C															
(14) (1	24) (14)	= (421)				• •				• • •				• •	• • •	• • •	
(14) (1 Eg. 5	24) (14) Theorem	= (421) Ag has) 2005	ubgrou	p of	order	a 6.			· · · ·	Partit	aning	Ģ	înto	(eft	Co Se	ts	••••
(14) (1 Eg Pool Suppos	24) (14) Theorem se G = Ag	$= (421)$ $A_{q} has$ $has a$) no s norme	ubgrou el Suk	p of group	order KJ	r 6. F of	- orde	a, الا ا	= 6 .	Partiti 1: C	ioning	G-	into	left 3 as	©50 G =	ts Kv	Kg
(14) (1 Eg Boot Suppos G = 1	24) (14) Theorem se G = Ag KUgK	= (421) Ag has has a volere) NOS NOrma g∉k	ubgrou el suk	р о р дотр ([6: h	$\frac{\partial \partial e_{x}}{\partial x}$ $K \leq \frac{1}{1K}$ $K \leq \frac{1}{1K}$	r = 6. r = 6. r = 1.	$r^2 = 2$	n K) and	= G . d parti	Parkiti tion G	into	6- right	înto Coset	(eft 75 as	Cose G =	ts Kv	Kg
(14) (1 Eg Boot Suppos G = 1 so 9K	2 4) (14) Theorem se G = A _q K U g K ' = Kg	= (421) Aq has has a volere So gKg [°]) NO S NOrma g∉k = K.	ubgrou el suk	р о р дютр ([6: h	$K \leq \frac{1}{100}$	$\frac{1}{2} = \frac{1}{2}$	r^2 orde $r^2 = 2$	n K) and	= 6 1 part	Parkiti tion G	into	6- right	înto Coset	(eft :s as	@50 G =	ts Kv	Kg
(14) (1 Eg Roof Suppos G = 1 so gK	2 4) (14) Theorem se G = Ag K U g K ' = Kg	= (421) Aq has has a volere So gKg [°]) norms g∉k = K.	ubgrou rl Suk	р о р дотр ([6: h	$K \leq c$ $K \leq $	$\frac{1}{2} = \frac{1}{2}$	r^2 orde	en K) and	= 6 d parti	Partitu tion G	into	G- rìght	înto coset	(eft 3 as	©50 G =	ts Kv	Kg .
(14) (1 Eg Ref Suppos G = 1 So gK	$2 + (14)'$ Theorem $Se G = A_q$ $K \cup g K$ $' = Kg$	= (421) Ag has has a volere So gKg [*]) norms g¢k = K.	ulogoou al Suk	р о р дгохор ([6: 1	$K \leq c$ $< \frac{1}{7} = \frac{16}{1k}$	2 6. 6 of 1 = 1	$rac{2}{6} = 2$	r K) and	= 6 1 parti	Partiti tion G	indo	6- right	înto Coset	(eft 3 as	©50 G =	ts Kv	Kgb
(iq) (1 Eg But Suppos G = 1 So gK	$2 + (14)'$ Theorem $5e G = A_q$ $K \cup g K$ $' = Kg$	= (421) Aq has has a volere So gKg [°]) norma g¢ k = K.	ubgrou el suk	р о р дюнр ([6: h	$r = \frac{16}{1k}$	2 6. 6 of (] = 1	$rac{1}{2} = 2$	z. K .	= G d parti	Partiti tion G	indo	G- right	înto coset	(eft is as	(c) Se (c) =	ts Kv	Kg
(iq) (1 Eg Roof Suppos G = 1 so gK	$2 + (14)$ Theorem $Se G = A_q$ $K \cup g K$ $= Kg$	= (421) Aq has has a volere So gKg [°]) no s norms g∉k = K.	ubgrou rl Suk	р о р дотр ([6: 1	$radex}{K \leq 1}$		$rac{2}{6} = 2$	en K) and	= 6 1 part	Partiti tion G	ido	G- rìght	îv to coset	(eft s as	C =	ts K v	i i
(iq) (1 Eg Roof Suppos G = 1 so gK	2 4) (14) Theorem se G = Aq K U g K ' = Kg	= (421 Aq has has a volere So gKg [*]) norms g∉k = K	ubgrou rl Suk	9 of group ([6: 1	rades $K \leq c$ $\langle 7 = \frac{16}{1k}$		$rac{2}{6} = 2$	z K) and	= G f parti	Partiti tion G	inte	G- rìght	into coset	(eft s as	(c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	ts K v	Land a second seco
(iq) (1 Eg G = 1 So gK	2 4) (14) Theorem se G = Aq K U g K ' = Kg	= (421) Aq has has a volere So gKg [°]) no s norms g∉k = K	ulogoon al Suk	9 of group ([6: 1	$r = \frac{16}{1k}$		$rac{2}{6} = 2$	z K -	= G	Partiti tion G	into into	G- right	înto coset	(eft is as	650 G =	ts Kv	Kg J

Let 6, H be groups (assumed to be multiplicative with identify elements efe G, eH EH).
A homomorphism $G \rightarrow H$ is a map satisfying $\phi(gg') = \phi(g)\phi(g')$ for all $g, g' \in G$.
Note: An isomorphism is the same thing as a bijective honomorphism
Ea $\phi: GL(F) \rightarrow F^*$ $\phi = det$
invertible multiplicative
orch a field F U elements of F
Properties: $\phi(e_{k}) = e_{\mu}$ $(\phi(e_{k}) = \phi(e_{k}e_{k}) = \phi(e_{k}) = \phi(e_{k}) = e_{\mu}).$
If $g \in G$ has order a then $ \phi(g) $ divides $n = g $. e_g . if $ g = G$ then $ \phi(g) $ has order $1, 2, 3$ or G .
$\phi(\vec{q}') = \phi(\vec{q})$ since $q\vec{q}' = e_{c} \Rightarrow \phi(\vec{q}\vec{q}') = \phi(e_{c}) = e_{H}$
The kernel of a homomorphism \$: G -> H is ker \$= {g \in G : \$(g) = e_{H} }. (Compare : the null space of a linear fransformation)
Theorem: ker et is a subgroup of G.
Proof If $g,g' \in \ker \phi$ then $\phi(g) = \phi(g') = e_{\varepsilon}$ then $\phi(gg') = \phi(g)\phi(g') = e_{\varepsilon}e_{g} = e_{\varepsilon}$ so $gg' \in \ker \phi$.
Since $\phi(e_6) = e_H$, $e_6 \in \ker \phi$.
If $g \in \ker \phi$ then $\phi(g) = e_{\mu}$ so $\phi(g') = \phi(g') = e'_{\mu} = e_{\mu}$ so $g' \in \ker \phi$. So $\ker \phi \leq G$.
Note: If \$ is one-to-one then ker \$ = Eeg3. Conversely, if ker \$ = Se3 then we show \$ \$ is one-to-one:
If $\phi(q) = \phi(q')$ then $\phi(\bar{q}'q') = \phi(\bar{q}') \phi(q') = \phi(\bar{q})' \phi(q') = e_q$ is $\bar{q}'q' \in \ker \phi = \{e_q\} = \{e_q\}$

The image of a homomorphism of: G > H then the image of (G) = { \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Proof Given two elements in \$(G), say \$(g), \$(g') for some g, g' & G, then
$\phi(q)\phi(q') = \phi(qq') \in \phi(G)$. Also $e_{\mu} = \phi(e_{G}) \in \phi(G)$. If we take any element in $\phi(G)$, say $\phi(q)$ where $g \in G$
then $\phi(g) = \phi(g') \in \phi(G)$. So $\phi(G) \leq H$.
Note: $\phi: G \rightarrow H$ is onto iff $\phi(G) = H$.
Eq. Define $\phi: S_4 \longrightarrow S_3$ as follows: Take $\pi_1 = (12)(34)$, $\pi_2 = (13)(24)$, $\pi_3 = (14)(23)$ in S_4 . These
form a conjugacy class in Sq $\{T_1, T_2, T_3\} = X$ (Really $\phi(\sigma) \in Sym X = Sym \{T_1, T_2, T_3\}$).
Given $\sigma \in S_a$ we have a map $X \rightarrow X$, $\pi : \mapsto \sigma \pi : \sigma$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{aligned} & \#((142)): & \pi_1 \mapsto (142)\pi_1 (142)^{-1} = (142) (12)(34)(42)^{-1} = (41)(32) = (14)(23) = \pi_2 \\ & \#((142)): & \pi_1 \mapsto (142)\pi_1 (142)^{-1} = (142) (13)(24)(42)^{-1} = (43)(12) = (12)(34) = \pi_1 \\ & \pi_2 \mapsto (142)\pi_2 (142)^{-1} = (142) (14)(23)(42)^{-1} = (42)(13) = (13)(24) = \pi_2 \\ & \pi_3 \mapsto ((42)\pi_3 (42)^{-1} = (142) (14)(23)(42)^{-1} = (42)(13) = (13)(24) = \pi_2 \end{aligned} $
\$ is onto Sz. (why? \$ \$ (Sq) is a subgroup of Sz. By Lagrange's Theorem, (\$(Sq)) is divisible by
$ \phi((13)) = (13) = 2$ and $ \phi((142)) = (132) = 3$ so $\phi(S_4) = S_3$.
$ke_{r}\phi = \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
(13 - ": "2) The image of a homomorphism of: G->H
et is a homomorphism; it is is a homomorphic image of G.

Fractional Linear Transformations (or Linear Fractional Transformations)	
A may RUEOS - RUEOS (actually a perimitation) of the form [cd]: x -> ax+h cx+d	there at hc =0.
$G_{L_2}(\mathbb{R}) = \begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ c & d \end{pmatrix} : a d - b c \neq 0 \end{cases}$ for actual invertible 2×2 real matrices.	· · · · · · · · ·
$\begin{bmatrix} a \\ c \\ d \end{bmatrix} \begin{bmatrix} a \\ f \\ s \end{bmatrix} (x) = \begin{bmatrix} a \\ c \\ d \end{bmatrix} \begin{bmatrix} a \\ fx + \delta \end{bmatrix} = \frac{a \begin{pmatrix} a \\ x + \delta \end{pmatrix}}{c \begin{pmatrix} a \\ x + \delta \end{pmatrix} + d} = \frac{a (a \\ x + \delta) + b (fx + \delta)}{c (a \\ x + \delta) + d (fx + \delta)} = (a \\ a + b \\ x + (a \\ b + b \\ x + (c \\ b + d \\ x + (c \\ x + (c$	
= [ax+br a p+b8] (x) = [cx+dr cp+d8] (x) (one property with multiplication of actual 2×2 investible matrices:	· · · · · · · ·
$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & s \end{pmatrix} = \begin{pmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + ds \end{pmatrix} $	
We denote by PGL_(R) the group of all fractional linear transformations RU(2003 -> RU(2003) PGL_(R) = { [a b] : ab, c, d \in R, ad-bc = 0 }.	ie.
This is a homomorphic image of $GL_2(\mathbb{R})$ under the homomorphism $\phi: GL_2(\mathbb{R}) \longrightarrow PGL_2(\mathbb{R})$, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longrightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. This map is a homomorphism : $\phi(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \phi(\begin{pmatrix} aa+br & ab+bs \\ ca+dr & cb+ds \end{pmatrix})$	· · · · · · · · ·
$= \begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ \alpha + d\gamma & c\beta + d\delta \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \phi(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) \phi(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix})$	
This homorphism is puto PGL (R) by definition but it's not onto because $\varphi((\lambda c \lambda d)) = [\lambda c \lambda d]$	= [c. d.]
Since [lac ld] (x) = Lc d] (x)	

$\begin{bmatrix} 3 & 4 \\ 1 & 7 \end{bmatrix}(5) = \frac{3 \times 5 + 4}{1 \times 5 + 7} = \frac{19}{12}$ $\begin{bmatrix} 3 & 4 \end{bmatrix}(6) = \frac{3 \times 60 + 4}{1 \times 5 + 7} = 2$ $\begin{bmatrix} 3 & 4 \end{bmatrix}(6) = \frac{3 \times 60 + 4}{1 \times 5 + 7} = 2$ $\begin{bmatrix} 3 & 4 \end{bmatrix}(6) = \frac{3 \times 60 + 4}{1 \times 5 + 7} = 2$	l -b). c a).	(ad-bc = 0)
$\begin{bmatrix} 1 & 7 \\ 1 & 7 \end{bmatrix} \begin{pmatrix} -7 \\ -7 \end{pmatrix} = \frac{3 \times (-7) + 4}{(\times (-7) + 7)} = \frac{-17}{0} = \infty$	₩2 = [GL_(4)]=	field of order q $(q^2-i)(q^2-q)$
$\begin{bmatrix} s \\ 0 \\ \tau \end{bmatrix} \begin{bmatrix} \infty \end{bmatrix} = \frac{2\pi}{0 \times 00^{-1} + 7} = \infty$ Every fractional linear transformation is a permutation of $\mathbb{R} \cup \{\infty\}$ Due (D) is a strain of $[a \ b7]^{-1} + [d \ b] = [d \ b]$	SL_(FF2)	$= (q^2 - 1)q^2 \qquad \text{by } q^2.$
The identity $\begin{bmatrix} 0 \\ i \end{bmatrix} (x) = \frac{1 \times x}{9 \times x + 1} = x$. The identity $\begin{bmatrix} 0 \\ i \end{bmatrix} (x) = \frac{1 \times x}{9 \times x + 1} = x$.	ident Thy	nonzero scalar
$\frac{[ou \ can \ limit k \ op}{[ou \ can \ limit k \ op} = [a \ b] $. .
$\begin{aligned} &\mathbb{F}_{2} = \{0, i\} \text{ is the field at order 2}: \\ &\mathbb{P}_{GL}(\mathbb{F}_{2}) = \{[0, i], [0, i], [1, 0], [1, 0], [1, 0], [1, 0]\} \cong GL_{2}(\mathbb{F}_{2}) \cong SL_{2}(\mathbb{F}_{2}) \cong S_{3} \end{aligned}$	· · · · ·	. .
Why? $PGL_2(\overline{F_2})$ is a group of parameterious of $\{0, 1, \infty\}$ So $PGL_2(\overline{F_2})$ is isomorphic to a subgroup of S_3 . $\overline{F_2}$ F_2	altos a constante a 23. a constante a	· · · · · · · · · · · · ·
$ GL_{2}(\mathbb{F}_{3}) = (3^{2}-1)(3^{2}-3) = 8\times 6^{2} 48$ $ GL_{2}(\mathbb{F}_{3}) = (3^{2}-1)(3^{2}-3) = 8\times 6^{2} 48$ $ GL_{2}(\mathbb{F}_{3}) = \frac{48}{2} = 24$ $PGL_{2}(\mathbb{F}_{3}) \cong S_{4}$ $(a \ b) \mapsto (a \ b)$	a gromp or ffz∪ 300} = [a b] c d]	[permitations [0,1,2,00].

Π	P. 01 8	1																	
$\pi_{4} = 10, 1, \alpha, \beta_{3}$	field of o	der 4																	
+101 × B	× OII ~ B						• •					• •							
00120	0 0 0 0 0						• •				• •	• •	٠		• •				
	1 OI & B						• •		• •	• •	• •	• •		• •	• •		• •		
BBallo	a lo a B "																		
	pro Bia																		
$\left \left(\operatorname{GL}_{2}\left(\operatorname{F}_{4} \right) \right = \left(\operatorname{A}^{2} - 1 \right)$	$(4^2 - 4) = 15$	× 12 = 1	80				• •		• •	• •	• •	• •	٠		• •	• •	• •	• •	
151 (E)1= 180							• •	• • •				• •	•		• •				•
$\left(\sum_{n=1}^{\infty} \left(\left(\left(\frac{n}{4} \right) \right) \right)^{-1} = \frac{1}{3}$	- 60																		
$ A_{5} = \frac{5!}{2} = 60$							• •					• •							
							• •			• •	• •		•		• •				
										• •				• •		• •			
12(14) - 15	h.s		als . de	OF C		0. 19	T-1 -												
$PSL_{2}(II_{4}) = \begin{cases} a \\ c \\ c \end{cases}$	d]: ad-bc	Ξ (,)	a,b,c,d	€₽		SL2 (A	F4)	• • •	• •	• •	• •	•••		• •	•••	• •	• •		•
$PSL_{2}(\mathbb{F}_{4}) = \begin{cases} a \\ c \end{cases}$ The map $SL_{2}(\mathbb{F}_{4})$	$\begin{bmatrix} b \\ d \end{bmatrix}$: ad-bc $\rightarrow FSL_{2}(F_{4})$		a,b,c,d	e TF	} ≅ ll er	SL ₂ (h	Fq) enni	ations,	of	Trans	U §00	, − } =	Ĩ	0, 1	, ∼ , ≺,	ß,	∞°}	••••	•
$PSL_{2}(\mathbf{F}_{q}) = \left\{ \begin{bmatrix} a \\ c \end{bmatrix} \right\}$ $PSL_{2}(\mathbf{F}_{q}) = \left\{ \begin{bmatrix} a \\ c \end{bmatrix} \right\}$ $\left(\begin{bmatrix} a \\ c \end{bmatrix} \right)$	b_{d}]: ad-bc $\rightarrow FSL_{2}(F_{4})$ $\mapsto \begin{bmatrix} a & b_{1} \\ c & d_{1} \end{bmatrix}$	= (, , , , , , , , , , , , , , , , , ,	a,b,c,d acting	€₩ as a	} ≌ ll e	SL ₂ (h ven p	Fq) ennit	ations,	of	F 4	() §00 1	} = 00	2	0, 1	, ∼, , ∼,	ß,	an }		•
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \\ c \\ d \end{cases}$ The map $SL_{2}(IF_{4})$ $\begin{pmatrix} a \\ c \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$	$ \begin{array}{c} b \\ d \end{array} : ad-bc \\ \rightarrow PSL_{2}(F_{4} \\ \mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix} $	÷ (, , , ,))	a,b,c,d acting	€ TF S	} ≌ ll e	SL ₂ (h ven p	Fq) ennut	ations	of		¢ ومع کی ا	} = } ⁰℃ 	2	0, 1	, , , , , , , , , , , , , , , , , , , ,	β, . β, .	∞ }		•
$PSL_{2}(H_{q}) = \begin{cases} a \\ c \end{cases}$ $PSL_{2}(H_{q}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(H_{q})$ $\begin{pmatrix} a \\ c \\ c \end{pmatrix}$ $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$	$b_{d} = ad-bc$ $\rightarrow PSL_{2}(F_{4})$ $\mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $\frac{1}{1} = 8 + 1$	= (,)	a,b,c,d acting)(~, p)	€ ŦF ₄ ? œs @ (∞)	} ≌ ll er	SL ₂ (h ven p	Eq.)	ations	of		U §00	} = 00	2	0, 1	, ∼, , ∼, , ∼, , ,	¢,	<i>⊂</i> ¶}		•
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(IF_{4})$ $\begin{pmatrix} a \\ c \\ c \end{pmatrix}$ $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}(x) = \frac{ xx+ }{0xx+ }$	$b_{d}]: ad-bc$ $\rightarrow PSL_{2}(F_{q})$ $\mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $\frac{1}{1} = x + 1$	= (,) (0, i	a,b,c,d acting (α, β)	€ TF4 as a (∞)	} ≌ ll e	SL ₂ (h	E) enni	ations	e e e e e e e e e e e e e e e e e e e		U §00	} = - ≥ 00 0	2	0, 1	, ∼, , ∼, , ∼, , , ,	ß,	<i>∝</i> ,}		· · · · · · · · · · · · · · · · · · ·
$PSL_{2}(IT_{q}) = \begin{cases} c \\ c \\ r_{q} \\ $	b]: ad-bc \rightarrow PSL, (Ff. \rightarrow [a b] \downarrow = χ + 1 1 χ possible slop	= [] (0, 1 25 of line	a,b,c,d acting $)(\alpha, \beta)$ as through	e Fr as a (∞) l the	} ≌ ll en origiu	SL ₂ (h ren p	F4) enum R ² }	a) ions,			U 500	} = 00	۶ ۲	0, 1	ن با با د د د د د د د	ß,	→ 1		
$F_{2}(\pi_{4}) = \{ c \}$ $PSL_{2}(\pi_{4}) = \{ c \}$ $The map SL_{2}(\pi_{4})$ $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} l \\ 0 \\ l \end{pmatrix}(x) = \frac{ xx+ }{0xx+ }$ $\mathbb{R} \cup \{ \infty \} = \{ a \}$	b]: ad-bc $\rightarrow PSL_2(F_q$ $\mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $\frac{1}{1} = x + 1$ l possible slop	= () (0, 1 25 f lind	a,b,c,d acting $)(\alpha, \beta)$ or through	e F as a (as) l the	} ≌ ll er orgiu	SL ₂ (h ven p	F7) Brunt R ² 3	ations				} = 00		0, 1		e e e e e e e e e e e e e			
$F_{2}(\pi_{4}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $FSL_{2}(\pi_{4}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $(a \ b \\ c \ d \}$ $(a \ b \\ c \ d)$ $(a \ c \ d$	b]: ad-bc \rightarrow PSL, (F4 \rightarrow [a b] \downarrow = [a d] \downarrow = $x + 1$ 1 possible slop	= [] : (0, 1 25 of line	a,b,c,d acting $)(\alpha, \beta)$ α through	€	} ≌ ll en ₽~giu	Sh ₂ (h ven p	F7) annat R ² 3	ations,			U § 00			0, 1		¢,			
$PSL_{2}(\mathbf{IT}_{q}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $PSL_{2}(\mathbf{IT}_{q}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \end{bmatrix}$ $PSL_{2}(\mathbf{IT}_{q}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $PSL_{2}(\mathbf{IT}_{q}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $PSL_{2}(\mathbf{IT}_{q}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $PSL_{2}(\mathbf{IT}_{q}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $PSL_{2}(\mathbf{IT}_{q}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $PSL_{2}(\mathbf{IT}_{q}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $PSL_{2}(\mathbf{IT}_{q}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$	b]: ad-bc $\rightarrow PSL_{2}(F_{4})$ $\mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ f = R+1 possible slop	= [a,b,c,d rcting)(α,β) ne through	€	} ≌ ℓℓ er	SL ₂ (h ven p	Fq) ennut R ² }	at ions			0 500	} = 00		0,1		ę.,			
$F_{2}(\pi_{4}) = \begin{cases} a \\ c \\ c \\ d \end{cases}$ $FSL_{2}(\pi_{4}) = \begin{cases} a \\ c \\ c \\ d \\ c \\ c$	bd]: ad-bc $\rightarrow PSL_{2}(F_{4})$ $\rightarrow [a b]$ $\downarrow = x + 1$ l possible slop	= () : (0, 1 25 of line	a,b,c,d acting $)(\alpha, \beta)$ as through	€ ∰ 9 @5 9 (∞) l He	} ≌ ll er	Sh ₂ (h ven p	F7) enum R ² }	ations,			0 500		5 See 1 - 5	0,1	· · · · · · · · · · · · · · · · · · ·	ę, ,			
$F_{2}(\pi_{4}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $FSL_{2}(\pi_{4}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \end{bmatrix}$ $FR = \begin{bmatrix} a \\ c \end{bmatrix} $ $FR = \begin{bmatrix} a \\ c \end{bmatrix} $ $FR = \begin{bmatrix} xx + \\ 0xx + \end{bmatrix}$ $FR = \{ a \}$	bd]: ad-bc \rightarrow PSL, (Ff. $\rightarrow [a b]$ $\downarrow = [a d]$ $\downarrow = 8+1$ l possible slop	= [,) (0, 1 25 of line	a,b,c,d reting $)(\alpha, \beta)$ re through	€	} ≌ ℓ e	SL ₂ (h ren p	F7) anni R ² 3	ations,	- A		0 500		5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	0,1	· · · · · · · · · · · · · · · · · · ·				
$F_{2}(\pi_{4}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $F_{2}(\pi_{4}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $F_{2}(\pi_{4}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $F_{2}(\pi_{4}) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $F_{1}(\pi) = \{ \begin{bmatrix} a \\ c \end{bmatrix} \}$ $F_{2}(\pi) = \{ a \}$ $F_{2}(\pi) = \{ a \}$	b] ad-bc $\rightarrow PSL_{2}(F_{q})$ $\rightarrow [a b]$ $\downarrow = [a d]$ $\downarrow = x+1$ l possible slop	= (,) (0, 1 25 f lind	a,b,c,d rcting)(α,β) re through	e F as a (a) h He	} ≌ ₽`gi	SL ₂ (h ven p	F7) Brunt R ² }	ations					5 SE 1 - 5 S	0,1	· · · · · · · · · · · · · · · · · · ·				

Orbits and Stabilizers for Group Actions Eq. G = symmetry group of $\frac{3}{2}$, G < S_q, G = $\langle (1234), (13) \rangle$ a dihedral group of G permites the four vertices transitively (meaning if x, y $\in \{1, 2, 3, 4\}$ then there exists g \in G such that g(x) = y). For legal moves of a Rubik's cube, the group of all moves does not permite the 26 small cubes (the group has three orbits of size 12, 8, 6) 12+8+6=26. $0(1) = {all corner cubes} 2, (0(1)) = 8$ A group action is fremsitive if there is only only one orbit. 0(2) = 12. 0(3) = 6The stabilizer of x is $Stab_{\mathcal{C}}(x) = G_x = \{g \in G : g(n) = x\} \leq G$. (a subgroup) eg. in the dihedral group above, $\operatorname{Stab}_{G}(2) = G_2 = \{ all \text{ elements of } G \text{ fixing } 2\} = \{(), (13)\}$ $\operatorname{Stab}_{G}(1) = \{(), (24)\} = \operatorname{Stab}_{G}(3) = \langle (24) \rangle$ $= \langle (13) \rangle$ The orbit of x is $O(x) = \{g(x) : g \in G\}$. In this case there is only one orbit $O(1) = \{1, 2, 3, 4\} = O(2) = O(3) = O(4)$ Theorem If G permites $X = [n] = \{1, 2, ..., n\}$ then for every $x \in X$, $|Stab_{g}(x)| |O(x)| = |G|$. In our dihedred group of order 8: $|Stab_{G}(x)| = 2$ |(O(x)| = 4, |G| = 8

We have implicitly used this! eq. when calculating the symmetry group of a cube for
(G) = Stab(v) O(v) shere v is a vertex
$= 6 \times 8 = 48$
(G1 = State(F) (O(F)) where F is a face
= 8 × 6 = 48
or = Stab(e) (9(e))
$= 4 \times 12 = 48$
More examples of stabilizers and orbits
G = <(1234), (13)> (13)> (2) G also geruntes the four edges a, b, c, d transitively
$y = \frac{1}{4}, \qquad \text{Stab}_{G}(a) = \left\{ (12)(34) \right\} = \left\{ (1), (12)(34) \right\}$
G also permites the two diagonals d, d' IG [= [Step (2)] [10(2)]
$O(d) = \{d, d'\}$ $8 = 2 \times 4$
Stab (d) = {(), (13), (24), (13)(24)}, a Klein four-group
(G = Stab(d) O(d) inst a set of points
$8 = 14 \times 2$

is a field $G = GL_3(F)$ where F G acts on F^3 , permitting vectors The stabilizer of $e_i = \binom{1}{6}$ is $\frac{1}{5}g\in G$: $ge_i = e_i$ $\frac{1}{5}ge_i = \frac{1}{5}\left[\frac{1}{6}e_i + \frac{1}{5}\right]$; b_i ge, = e, says o e f = $\left\{ \begin{bmatrix} 0 & e \\ e \\ e \\ f \end{bmatrix} : b, c, e, f, \} \in F, ej-fi \neq 0 \right\}$ $O(e_1) = \{all nonzero vectors\} = F^3 - \{[o_1]\}$ F^3 has two orbits: $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$, $F^3 - \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$.