

A group is a set & with a binary operation * which has an identity	clance	ent;	the	
A group is a set & with a binary operation * which has an identity operation is associative; and every element has an inverse. Eq. R = set of real numbers under addition '+'. It's identity element is 1	0 0	· · ·	· · ·	
$0 + \pi = \pi$				
$x + (-x) = 0 = (-x) + x$) for all $x, y, z \in \mathbb{R}$		• • •	• • •	
(R, +) is a group. (R, *) (real numbers under multiplication is dunost but not quite a group. inverse). I is the identity.	(0	bes not	have	an '
inverse). I is the identity. $\mathbb{R}^{\times} = \{ all nonzero real numbers \} = \{ a \in \mathbb{R} : a \neq 0 \} $ is a group mider and plicat	con.	• • •	· · ·	
$\begin{aligned} 1a &= a \\ (ab)c &= a(bc) \\ a \cdot \overline{a}' &= \overline{a}' a &= 1 \\ a'' &= \frac{1}{a} \end{aligned} \qquad \text{for all } a, b, c \in \mathbb{R}^{\times}. \end{aligned}$				
(R [*] , x) is a group.				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	R, a	· · ·	· · ·	• •
(x * g) * z = (x + g + 7) + z + 7 = x + g + z + H = x + (y + z + 7) + 7 = x * (y * z) so $(R, *)$ is associative. Note that $-7 \in R$ is an identify element since $-7 * x = (-7) + x + 7 = x$ for all $x \in R$. So $-7 \in R$ is an identify elem and $x * (-7) = x + (-7) + 7 = x$	rent :	for '*	• • • •	• •
(-x-14) * x = (-x-14) + x + 7 = -7 $\pi * (-x-14) = x + (-x-14) + 7 = -7$ for all $x \in \mathbb{R}$. So $-x-14$ is an inverse el	rement	for x	•	

(x+y) * = 5* (y*2)	7=3	(x	¥y)*~ =	- (At y+7)+2+7	
$ \Rightarrow (\pi + y + 7) + 2 + 7 = \pi + (y + 2 + 7) + 7 \iff \pi + y + 2 + 14 = \pi + y + 2 + 19 $	7 - 5 = 3 - 5			x+y+2+14	
$\implies 7+y+z+14 = x+y+z+14$	=) (2) = (2) =			8+ (y+2+7)+7 8* (y*≥)	
	A = A				
so (R, *) is associative.					
(Q, +) Q = { retional munders }	u u u -3 € Qu u u u				
is a group	172 -1.72 E Q				• • •
(Q^*, \times) is a group.	T00 π¢Q				
$Q^2 = Q - 303 = \{all non 2000\}$	≥ * * * √₹ ¢ Q * * *				
is a group. (Q^*, \times) is a group. $Q^* = Q - 50^2 = \{all no exceptional numbers \}$ (N, +) is not a group (N, +) is not a group	\$				
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$					
$\mathbb{N} = \{1, 2, 3, 4, \dots, \} = \mathbb{Z}^{>0}$					• • •
$N_0 = \{0, 1, 2, 3, 4, \dots\} = \mathbb{Z}^{>0}$					
Z = 1 integers 3 = 3 - 1, -3, -2, -1, 0, 1,2	$2, 3, 4, \ldots, 3, 4, \dots, 4$				
		· · · · · · · · ·			• • •
(Z, +) is a group.		not a subarro o (1	e -) (Atlemal RC R	R)
$(\mathcal{U}, +) = (\mathcal{U}, +) \leq (\mathcal{K}, +) \leq (\mathcal{L}, +)$	i but in , x / 12	the stranged of the	1,7/ (°		.
$(\mathbb{Z}, +)$ is a group. $(\mathbb{Z}, +) \leq (\mathbb{Q}, +) \leq (\mathbb{R}, +) \leq (\mathbb{C}, +)$ \uparrow \uparrow	In 1K, 2*5=	6 sul n (1K,+)	1 2+5=5	s subject	
Subgroup Subgroup					

GL, (R) = { investible was motives with real entries } is the general linear group
$GL(\mathbb{R}) = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : abc d \in \mathbb{R}, ad-bc \neq 0 \right\}, I = \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} a \\ b \\ c \end{bmatrix} = adbc \begin{bmatrix} a \\ b \\ c \end{bmatrix} = adbc \begin{bmatrix} a \\ c \\ c \end{bmatrix}$
GL (R) is a multiplicative group with identity $I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ GL (R) is not commutative for $n \ge 2$.
GL, (R) is not commutative for N>2.
(B) : (mining the second s
(G, *) is Abelian if x × y = y × √ for all x, y ∈ 6. (abelian)
$GL_n(\mathbb{R})$ is abelian for $n=1$, nonabelian for $n \ge 2$. $\begin{bmatrix} 1 & 3 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 5 & 15 \\ 5 & 35 \end{bmatrix}$ whereas $\begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -1 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ -1 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ -1 & 7 \end{bmatrix}$
GL. (R) is abelian for n=1; nonabelian for n=2. $\begin{bmatrix} 1 & 3\\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0\\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 5 & 35 \end{bmatrix}$ whereas $\begin{bmatrix} 2 & 0\\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3\\ -1 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 6\\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0\\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 5 & 35 \end{bmatrix}$. GL, (R) $\stackrel{\sim}{=} R^{\times}$ [these are somerphic groups i.e. essentially the same group. Since R^{\times} is abelian, so is $GL_1(R)$.)
E stien an maintien à acconsistive (fea) ou = fo (ach)
Function composition is associative: (fog) = fo (goh)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $X \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{L}$, $f(g(h(x))) \in W$.
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. $(f \circ g \circ h)(x)$
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} Y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. $(f \circ g \circ h)(x)$
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)
Function composition is associative: $(f \circ g) \circ h = f \circ (g \circ h)$ $x \xrightarrow{h} y \xrightarrow{g} Z \xrightarrow{f} W$ If $x \in X$ then $h(x) \in Y$, $g(h(x)) \in \overline{Z}$, $f(g(h(x))) \in W$. (fogoh)(x)

If X is any set, the bijections X + X (i.e. fore-to one and outo) form a group under composition. This is the <u>symmetric group</u>
$G = Sym X \subseteq \{ bijections X \rightarrow \Lambda \} = \{ plum letions ci n \}.$ $Mot = 0 geotion$ $g = X = [3] = \{1, 2, 3\}.$ $(Notation : [n] = \{1, 2, 3,, n\}.$ $Not = 0 geotion$ $(neithen interval)$ $(neithen inte$
$\frac{1}{3} = \frac{1}{3} = \frac{1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

If a, & are permitations then are + for in general but they have the same cycle	structure.
The order of a group G is 1G1, the number of elements in the group. (finite	er infinite)
$ \{S_n \mid = n\}$	
$(GL_{n}(\mathbb{R})) = \infty$	
So is nonabelian for $n \ge 3$. So = $\{(), (12)\}$ is abolian.	
$S_e = \{(1, (12))\}$ is interval. In S_n , disjoint cycles always commute, e.g. in S_q , $(137)(26) = (26)(137)$	
If two permutations commute, must they have disjoint gels? 1'A 2 2 6 82 42	under of edges
	12×4 = 48 Counter of scrubbin fixing tack age munder of entires
$\alpha \beta = (135)(29b)(12)(34)(5b) = (195236)$	
$\beta \alpha = (12)(34)(56)(135)(246) = (145236)$	8 × 6 = 98
So acts on [n] = {1,2,, n} (the n points that we are permuting)	humber of symetries fixing each vertex
Do not confuse Sn with [4]. THIS IS NOT THAT. (Sn = n!, 102 = n.	(symmetries map
Typically, groups act on things (generically called points). Typically, groups describe symmetries of things.	Low hany Symphics was caching to 8 = 48 cach of the other faces of faces
A cube has 48 symmetries forming a group 6 of order 48. [6[-48. 24 of these are direct symmetries preserving crientation: these are rotations. 24 of these are virtual symmetries which cannot be obtained by physical motion.	
24 of these are virtual symmetries which cannot be obtained by physical motion.	

In a group & with identity e, an element get has order n if g"= e
list no emalla oner of paral < e
If G is the symmetry group of a cube, every reflection has order 2. N>1
Also a 180° rotation about any axis has order 2.
A 120° rotation of the more about an axis joining two opposite (antipadel) refrices has order 3.
Also a 180° rotation about any axis has order 2. A 120° rotation of the whe about an axis joining two opposite (antipadal) restrices has order 3. The cube has axes of symmetry joining centers of opposite faces, and a 90° rotation around such an
axis has order 7. In any group, the identify has order 1.
S has I element of order 1, i.e. ()
Sz has 1 element of order 1, i.e. () 3 elements of order 2, i.e. (12), (13), (23) 2 elements of order 3, i.e. (132), (123)
$ S_{3} = 6$
The order of an mayde. If $d \in (1, 2, 3,, n)$ then $d' = (1)$ but $d' \neq (1)$ for $k = [1, 2,, n-1]$.
The order of an maybe. If $d = (1, 2, 3,, n)$ then $d^{*} = (1)$ but $d^{*} \neq (1)$ for $k = 1, 2,, n-1$. So that $\frac{1}{2}$ elements of order 1, i.e. (1) $\frac{1}{2}$, i.e. (12),, (13)(21), (six 2-cycles (ij); three permittations (i))(kl) having $\frac{1}{2}$, i.e. (12),, (13)(21), (six 2-cycles (ij); three permittations (i))(kl) having $\frac{1}{2}$, i.e. (12),, (13)(21), (six 2-cycles (ij); three permittations (i))(kl) having $\frac{1}{2}$, i.e. (12),, (13)(21), (six 2-cycles (ij); three permittations (i))(kl) having $\frac{1}{2}$, i.e. (12),, (13)(21), (six 2-cycles (ij); three permittations (i))(kl) having $\frac{1}{2}$, i.e. (12),, (13)(21), (six 2-cycles (ij); the same cycle structure as (13)(4) $\frac{1}{2}$, i.e. (12),, (13)(21), (eight 3-cycles (ijk); the same (12)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2
B
6 9, Six 7-cycles e.g. (1284)
(2q) = 2T
(m) = number of n-subsets of an m-set, eq. (4)=6: a 4-set (set with 4 elements, eg. [4] = ?1,2,3,4})
m_1 m_2 m_1 m_2
$= \frac{1}{n! (n-n)!} = \frac{1}{n! (n-1) (n-2) \cdots (1-n-2)} = \frac{4}{3} = \frac{4}{2} = \frac{4}{3} = \frac$

$S_5 = \{permitations of [5] = \{1, 2, 3, 4, 5\} \}$ is a group of order $ S_5 = 5! = (20)$ (12)(13) = (132)	
How many elements of each order does Sy have?	•
How many elements of each order does 5 have? 1 dement of order 1: () 25 elements of order 2: (ij) (2)=10 cyclos of length 2 (i 2)(13) = (13 2) (i 2)(13) = (13 2) (i 2)(13) = (13 2) (i 2)(13) = (13 2)	•
25 elements of oder 2 ! (ij) (2)=10 cycles of light 2 (ij)(kl) 5×3=15 elements which are a product of two disjoint 2 cycles	•
$e^{2}: (0 \times 3 \div 2) = 15$	•
choise of 2-cycles (kl) since (ij) (kl) = (kl)(ij) 2-cycle (ij) disjoint from (ij)	
A 2 cycle (ij) (i.e. cycle of length	hz
20 elements of order 3: 3-cycles (ijk) (⁵ / ₃)×2 = 10×2=20 is a transposition.	
	•
24 dements of order 5: 5-cycles (1****) (51×31 = 5×6=30	•
$\frac{36}{29} \text{ elements of order } + 4 \cdot \text{cycles (i j k l) e.g. (1234), (1342), (2534),}$ $\frac{29}{29} \text{ elements of order 5 : 5 - cycles (1 + + + *) (5/4) \times 3! = 5 \times 6 = 30$ $\frac{20}{20} \text{ elements of order 6 : (i j k) (1 m)} \qquad \qquad$	•
$\frac{-2}{10} = 10 [$ how many ways to choose i, j, k, d how order 6 how order 4	þ :
If de S is written as a product of disjoint cycles, then its order 12 5 to 1'2' 5 to is the least common multiple of the lengths of its cycles. (123) (45678) has order 15	•
is the least common multiple of the lengths of its uplies. (123) (45678) has order 15	•
In R* = { nonsero real numbers } under nuttiplication, (123) (456789)6	•
1 has order 1:	•
	15
every other element & R ² (123) (45678) =1 has infinite order. We also write the order of a EG as (a) e.g. ord ((123) (45678)).	- Iz

The symmetry group of a cube is a group 6 of order 48 i.e. 161=48. It is useful to think of 6 as a subgroup of S8:
$\begin{cases} f = \{1, (1234)(5876), (1854)(2763), (18)(27)(36)(45), (173)(486) \dots \} \\ g = \{1, 2, 3, 3, 4\} \\ g = \{1, 2, $
8 7 6 identity 90° rotation about 90° rotation reflection in the vertical axcis about green horizontal plane of Symmetry axis of Symmetry of Symmetry
$\mathcal{A} = \mathcal{A} = $
$(1854)(2763)(1234)(5876) \approx (173)(2)(486)(5) = (173)(486)$ is a 120° volation about the axis joining the pair of antipodal vertices 2,5
antipodal vertices 2,5 the p C = + 1 1 is the Smallet
subgroup of 6 containing given, gk
The tetter S has a rotational symmetry about its centre (rotate 180° about -5 . The symmetry group in this case is $\{I, R\}$ where R is the 180° rotation, $R^2 = I$. Both symmetries of S preserve prientation. $5 \neq G$
{I, R} where R is the 180° rotation, R= I. Both symmetries of S preserve orientation. 5# (
$\frac{y}{1-x} \neq \frac{x}{1-y} \neq \frac{y}{1-x} \neq \frac{y}$
U has symmetry group of order 2 $\{I,T\}$ where T is a reflection in the vertical axis of symmetry, $T=I$ Reflections reverse orientation; rotations preserve orientation.

Y has symmetry grocep of order 2
Y has symmetry group of order 1.
has symmetry group of order 6. (3 rotational symmetries, 3 retlective symmetries).
For any object X C R", either all symmetries of X preserve orientation or exactly half of the symmetries
ic anabolian
Plant and But (ander)
The figure E = as a symmetry group of order 4 $\{I, R, T, RT\}$ where $I = iductity$, $R = 180^{\circ}$ robotion about the center, $T = reflection$ in horizontal axis of symmetry, $RT = TR = effection$ in the restical axis of symmetry. This group is declian.
rotation about the center, T = reflection in horizontal axis of symmetry, RT=TR = reflection in the restical axis
of symmetry. This group is accuration.
has the same symmetry group as EI (abelian of order 4).
These infinitely name symmetries. The symmetry group is infinite nonabelian.
20 /
TT' = T'T 10° rotation 10° rotation clock vise, counterclockwise ig. 30° counterclockwise ig. 30° counterclockwise ig. 30° counterclockwise about center