

A matrix in $Gl_2(\mathbb{R})$ is conjugate to $[o-1]$ if it has trace 0 and determinant -1.
If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{G}_{L_2}(\mathbb{R})$ then A has characteristic polynomial $f(x) = det(xI-A) = det(\begin{bmatrix} x & o \\ o & x \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix})$
$= \begin{vmatrix} x-a & -b \\ -c & x-d \end{vmatrix} = (x-a)(x-d) - bc = x^2 - (a+d)x + (ad-bc)$ $+rA det A \qquad Some books define the characteristic polynomial Cayley Hamilton Theorem (look it up in any linear algebra book) of A as det(A - xI) = (-i)^n det(xI - A)If f(x) is the characteristic polynomial of an nxn matrix A, then f(A) = 0.$
In the 2×2 case, $A^2 - (4rA)A + (datA)I = 0$ holds as we compute here: $A^2 = \begin{bmatrix} a & 6 \\ c & d \end{bmatrix} \begin{bmatrix} a & 6 \\ ac+cd & bc+d^2 \end{bmatrix}$ $A^2 - (4rA)A + (datA)I = \begin{bmatrix} a^2+bc & ab+bd \\ ac+cd & bc+d^2 \end{bmatrix} - (a+d)\begin{bmatrix} a & b \\ c & d \end{bmatrix} + (ad-bc)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a+bc-(4+d)a + (ad-bc) & ab+dc - (4+d)a + (ad-bc) \\ ac+cd - (a+d)c & bc+d^2 - (a+d)d + (ad-bc) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
If $A \in GL_2(\mathbb{R})$ has trace 0 and determinant -1 then it satisfies $A^2 - 0A - 1I = 0$ so $A^2 = I$ so in the group $GL_2(\mathbb{R})$, A has order too 2. (tr $I = 2$, not 0) f(x) = det(xI - A) may or may not be the smallest degree polynomial that has A as a root. The minimal polynomial of A, $m(x)$, is the menic polynomial of smallest degree satisfying $m(A) = 0$. Facts (see a linear algebra book):
Facts (see a linear algebra book): Roots of $f(x)$ are eigenvalues of A . m(x) divides $f(x)$ i.e. $f(x) = h(x)m(x)$ for some monic polynomial $h(x)$ (often $h(x)=1$, $m(x)=f(x)$). Every eigenvalue of A is a root of $m(x)$.

Theorem let A & GL_ (R). Then the following are equivalent:
(i) $+A = 0$, $dat A = -1$
(ii) A has order 2 but A = - I.
(iii) A is conjugate to $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ be have proved (i) \Rightarrow (ii). And (iii) \Rightarrow (i) is easy. Assume $A = M\begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} M^{-1}$ for some $M \in GL_{2}(\mathbb{R})$.
Then $+A = +(M[i_0, 7M]) = +(MM[0+]) = +[0, 2] = 0$.
tr AB = + BA if A is man, B is name (short proof: see linear algebra. Both equal to $\sum_{i=1}^{2} \sum_{j=1}^{2} a_{ij} b_{ji}$
$det A = det M det ['_0 -] det M' = -1.$
MM' = I
$det (M)det (M^{-1}) = det I = I$
We to see (ii) > (iii) If A has order 2 then $A^2 = f$ $A \neq f$ A is a root of $x^2 - 1 = (x+1)(x+1)$
We must prove (ii) => (iii) If A has order 2 then $A^2 = J$, $A \neq J$. A is a root of $x^2 - 1 = (x+1)(x-1)$ So the minimal poly. of A divides $x^2 - 1 = (x+1)(x-1)$ or $x+1$ or $x+1$ or 1 .
If $m(x) = 1$ then $m(A) = I = 0$. No!. If $m(x) = x_{-1}$ then $m(A) = A - I = 0$ then $A = I$ (No! I has order 1, not order 2) If $m(x) = x_{-1}$ then $m(A) = A - I = 0$ then $A = I$ (Ab! by assumption)
If $m(x) = x_{-1}$ then $m(A) = A - L = D$ then $n = 1$ (No! by assumption)
If $m(x) = x+1$ then $m(A) = A + I = 0$ so $A = -I$ (No! by assumption). If $m(x) = x+1$ then $m(A) = A + I = 0$ so $A = -I$ (No! by assumption). So $m(x) = \pi^2 - 1$ divides $f(x)$, so $f(x) = x^2 - 1$ = 7 $+rA = 0$, det $A = -1$, => (i) holds So $m(x) = \pi^2 - 1$ divides $f(x)$, so $f(x) = x^2 - 1$ = 7 $+rA = 0$, det $A = -1$, => (i) holds A = -1
So $m(x) = n = 1$ altered solved for the eigenvectors corresponding to 1,-1 i.e. $Au = u$, $Av = -v$. So ± 1 are eigenvalues of A. Let u, v be eigenvectors corresponding to 1,-1 i.e. $Au = u$, $Av = -v$. Let $M = [u v]$ (2x2 metrix having u, v as columne)
Let M = [u v] (2x2 metrix having 4, v as columne)
$AM = \left[Au \left[Av\right] = \left[u \left v\right]\right] = \left[u \left v\right]\right] = M\left[0 - i\right] = M\left[0 - i\right] \implies A = M\left[0 - i\right]M^{T} i.e. (iii) holds.$

There are two conjugacy classes of doments of order 2 in 6=GL(R):
$3-T=1.073$ is in a class by itself since $T \in Z(G)$
• All matrices conjugate to [0] i.e. all matrices with trace O and determinant -1.
$\frac{1}{2} = \frac{1}{2} = \frac{1}$
This includes [0 -1], a < R
Consider the dihedral group G of order 8 (the symmetry group of a squere) so (GI = 8. Let's pick generators x, y for G where x is an other at of order 4 and y is a reflection (order 2).
$G = \{ x_1, x_2, x_3, y_1, x_2, x_3, x_3, x_4, y_1, x_2, x_3, y_1, y_2, y_1, y_2, y_3, y_4, y_1, y_2, y_3, y_1, y_2, y_3, y_1, y_2, y_3, y_4, y_1, y_2, y_3, y_4, y_1, y_2, y_3, y_4, y_4, y_4, y_4, y_4, y_4, y_4, y_4$
$x^{i}x^{j} = x^{ij}$ $x^{i}x^{j} = x^{ij}$ $x^{i}x^{j} = x^{ij}$ $x^{i}y \cdot x^{j} = x^{ij}y$ $x^{i}y \cdot x^{j} = x^{ij}y$ $x^{i}y \cdot x^{j} = x^{ij}y$ $x^{i}y \cdot x^{j} = x^{ij}y$ $x^{i}y \cdot x^{j} = x^{ij}$ $x^{i}y \cdot x^{j} = x^{ij}y$ $x^{i}y \cdot x^{j} = x^{ij}y$
$x \cdot xy = x \cdot y$) $x \cdot y = x \cdot y$, $y \cdot y = x \cdot y$
$xy \cdot x' = x \cdot y$ ($yx \cdot g$)
Presentation for G: G = $\langle x, y \rangle$: $x^{4} = y^{2} = 1$, $yx = x^{2}y$ generators relations $yx^{2} = x^{2}y = x^{2}y$ $yx^{2} = x^{2}y = x^{2}y$
generators relations
g (g) the rule
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} x & 1 & \langle x \rangle & \langle x \rangle = 7 \\ x^{3} & 7 & \langle x \rangle & \langle x \rangle = 1 \end{array} \qquad \begin{pmatrix} \zeta & \zeta \\ \zeta & \zeta $
$\begin{cases} x^2 & 2 & G, \\ (G = 8) \end{cases}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{cases} x^{2}y - 2 < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > $
$\begin{cases} x_{y} = 2 & \langle x_{1}^{*}, x_{y} \rangle = \{x_{1}^{*}, x_{y} \rangle = 4 \\ [x_{y}^{*}] = 2 & \langle x_{1}^{*}, x_{y} \rangle = \{x_{1}^{*}, x_{y}^{*}\} = 4 \\ If (O_{g}) is the conjugacy class of g=6 then O(g) (C_{g}(g)) = (G_{1}, e_{g}, (x_{1}) = 8 \\ 2x \neq = 4 \end{cases}$
$-\frac{1}{2} + \frac{1}{2} + 1$

Cosets and Cagrange's Theorem
If H is a subgroup of G (nultiplicative, at least generically) then a coset of H in G is a subset of the form $gH = \{gh : h \in H\}$. Note: $gH \subseteq G$, not a subgroup in general.
silvest of the for all = { ah : he ff }. Note: gH G , not a subgroup in general.
$H_{13}H_{1$
$\begin{array}{l} fg. +ike & H = \langle (12) \rangle & ik & G = 33 \\ \hline (1) H = (12) \langle (12) \rangle = \langle (1), (12) \rangle \\ \hline (12) H = (12) \langle (1), (12) \rangle = \langle (1), (12) \rangle \end{array}$ $\begin{array}{l} H, & (13) H, & (23) H \\ \hline (12) H \\ \hline (12) H = (12) \langle (1), (12) \rangle = \langle (1), (12) \rangle \end{array}$
$ (13) H = (13) \{(1, (12))\} = \{(13), (123)\} $ $ (12) H = (23) \{(1, (12))\} = \{(23), (132)\} $ $ (12) (132) (132) (132) \{(132)\} $
$(1 \ge 3) H = (1 \ge 3) \{(1), (1 \ge)\} = \{(1 \ge 3), (1 3)\}^{-1}$ (1) (137 (123)
$(123)H = (123) \{(1), (12)\} = \{(125), (13)\}^{2} $ $(1) (13) (123) \qquad (6 = 3 \times 2)$ $(132)H = (132)\{(1), (12)\} = \{(132), (23)\}^{2} \qquad (Recall : 1) (13) (123) \qquad (123) \qquad (123)$ $A partition of G is a collection of subsets that covers all all of G is a collection of subsets that covers all of G is a collection of subsets that covers all of G is a collection of subsets that covers all of G is a collection of subsets that covers all of G is a collection of subsets that covers all of G is a collection of subsets that covers all of G is a collection of subsets that covers all of G is a collection of subsets that covers all of G is a collection of subsets that covers all of G is a collection of subsets that covers all of G is a collection of subsets that covers all of G is a collection of G is a collection of S is a collection of G is a collection of S is a collection $
(132) H = (132) {(), (12)} = {(132), (23)} (Recall: A partition of G is a collection of subsets that covers all of G without any overlap.) Theorem The assets of a subgroup H ≤ G partition the elements of G. Theorem The assets of A subgroup H ≤ G partition the elements of G. Theorem The assets of A subgroup H ≤ G partition the elements of G. Suppose two cosets all and bH overlap Proof If g ∈ G, then g H is a coset containg g (since e ∈ H). Suppose two cosets all and bH overlap Proof If g ∈ G, then g H is a coset containg g (since e ∈ H). Suppose two cosets all and bH overlap Theorem The cosets of G.
The next of a culture HS & pertition the dements of G
Theorem the cosets att and bit overlap of (since e = H). Suppose two cosets att and bit overlap
is ge at a by so g= ah. = bh. for some h, h2 EH, so att = gh, tt = gH) IF hEH the
i.e. $g \in aH(16H) \Rightarrow g^{-}uh = bh_{1}$ ($a = gh_{1}^{-1}$ and $b = gh_{2}^{-1}$) and $bH = gh_{2}^{-}H = gf(f)$. \Box $h = h_{1}^{-}h_{1}h \in h_{1}^{-}H$
$H \subseteq h, H$ so $H \subseteq h, H$.
$\frac{1}{1600} \frac{1}{1600} = \frac{1}{160} \frac{1}{100} = \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$
Proof A bijection H -> gtt is given by h -> gh. An inverse map gH -> H
is given by x r gx.
As a corollary, we obtain lagrange's lhearen: (G) = (no. of cosets of H in o) ~ (see or each coset)
the index of H in G- (H)
e. [G] = [G:H][H] (denoted [G:H])

Eq. In Sn. the set of all even permitations is a subgroup An. The set of all odd permitations is a coset of An	(n≥s)	
So has two cosets of An: () An = An = geren per mutations g (12) An = 2 add permutations }	· · · · · · · · · · · · · · · · · · ·	
$ S_n = n! = [S_n: A](A_n)$		
En the additive group of R ³ , a line through the origin is a subgroup	· · · · · · · · · · · · · · · · · · ·	
Eq. In the additive group of R ³ , a line through the origin is a subgroup A coset of this line L is a line parallel to the original line. The parallel lines to I give a profition of R ³ .		
Eq. $G = S_n$ is partitioned into cosets of $H = G_1 \cong S_{n-1} = \{permutions of 2, 3,, n wh$	ile fixing 13	
$G = \sigma_{1} H \cup \sigma_{2} H \cup \sigma_{3} H \cup \cdots \cup \sigma_{n} H \qquad \text{where } \sigma_{k} \in G \text{ is any perimitation mapping}$ $eg \sigma_{i} = () , \sigma_{2} = (i 2), \sigma_{3} = (i 3), \cdots, \sigma_{n} = (i n)$ $\sigma_{k} H = S \text{ all } \sigma \in G : \sigma(i) = k $		
Proof If $\sigma \in G$, $\sigma(i) = k$ then $\sigma' \sigma_k(i) = \sigma'(k) = 1$ so $\sigma' \sigma_k \in H = G_1$ so $\sigma' \sigma_k$	$s_k H = H + s_0 + \sigma_k H = \sigma H$.	
H = (n-i)!, $[G:H] = n$, $ G = H [G:H]n! = (n-i)! \neq n$		

Left cosets vs. Right cosets of HSG	Eg. G= S3	$H = S_2 = G_3$
Left cosets $gH = \{gh : h \in H\}$, $g \in G$.		
Right cosets Hg = {hg : h∈ H }	Left cosets	(12) (132) (23)
[G:H] = index of H in G = complex of left possets of H in G	Right cosets	() (13) (123)
= unmber of right Cosets of H in G	G = {	reG: r(k)=k}
All cosets of H in G have size [gH] = [H] = [H].	\$	abilizer of G
If G is abelian, then $gH = Hg$. We say $H \leq G$ is normal if $gH = Hg$ for all $g \in G$ (left and right cossets are the same). Eg. $G = S_4$, $K = \langle (12)(34), (13)(24) \rangle = \{(1, (12)(34), (13)(24), (14)(23)\}$ is a Klein four-subgroup of G.	$H(rz) = \{(), \\ H(rz) = \{(), \\ H(zz) = \{(), \\ H(rzz) = \{(), \\$	$ \begin{cases} (z) \\ ($
Theorem K≤G. <u>Proof</u> IF g∈G and h∈K then gkg ⁺ ∈K so gKg ⁺ ⊆K. (gKg ⁺ = so gKg ⁺ g ⁺ ⊆Kg ie. gK⊆Kg. Similarly, gK ≥ Kg	so gu - ng.	—
In general if $H \leq G$ then $gH\bar{g}'$ is a subgroup of G , called a <u>Proof</u> Given hi, hz \in H so $gh, \bar{g}', ghz\bar{g}' \in gH\bar{g}'$, we have $(gh, \bar{g}')(ghz\bar{g}')$ so $e \in H$ and $geg\bar{g}' = e \in gH\bar{g}'$. Also if $h \in H$, so $ghg' \in gH\bar{g}'$.	e conjugate of H. = g.hhr.g ∈ gHg Hen (ghg')'=	(conjugating by $g \in G$) Take $e \in G$ as the identity, $gh'g' \in gHg'$.

•	Go	nji	ıqā	te	Su	bgr	oup	>5	an	e al	150	my	en p	hic	. 4	D. (each	- 01	ther	•	G	Nen	- 9	€6	/	H≤	€ G,	. a	n i	Som	ال	fišn	€.	H -		g	ffg		ß		
		fiv.	en 1	, k 	y	•	. h . 	<u>ب</u>	? .	gr	າງ	•	• •	•		•	• •	•				•	• •	•			•	• •	•			• •			· - (• •	•			о. Л. Л. – Г	
	A	5.	ilog	no.	up.	įΗ	1	۶,	i	Ś	ho	m	al	•	(¦H	F⊅	¢)	: 6	ff	e	NCU	7	conj	uga	te	of '	H	is	H	ifs	eff	. i.e	? • •	gt	łg	.= .	H -	-for	Γ a	ll g	eG-
	Ex	ar	mpl	e		Ģ	s S	`. ∕≰ ·	, . , .	╂	=	G		şi	$)_i$	(23), 1	(24)	, (3	4),	(2	234)	, (24	3) {		211	S3	1	6	11	(12	4)	# F	1						
	9	Hi		=	G,	2	۲	()		((1)	3)	. ((14	Š,	(7	54)	, i	1 34	ŧ),	(I	4 3)ζ	2	S,		•		53	•		9	= (()	4 z)								
	. 0			• •			÷.	J	1.	3)) 14)	S ↓		٠				•			-	• •		• •				۰				•					•	•	•	• •
		r r	י ר		r L			S T	() 	ć			7 - 1 1	-1' -1'			[a(ა ა::	- 2			So		ahg	-'€	G,		. 1	This	sh	ws	g	fla	<u> </u>	G,			
	W	ng			≥1 V 1	On ,	h€ 11 -1	e	-	6)	•	gr	ן נ י	2)	-	gh	(()×		Ju) . J		. ~		•				. U.	J	•				
		Ir	× .	fa	শ	gł	+g =	- 6	~ 2 ;																																
						•	• •			•						•						•			• •	•		• •	•		•	• •	•								
																																• •		• •							
•		•			•	•	• •	•				•	• •	•		•	• •	•				•	• •	•	• •	•	•	• •	•			• •	•				•				•
																																								0	
•		•	•	• •			• •						• •				• •		•				• •		• •	•		• •			٠	• •		• •			•	•			•
																						•							•												
		•																										• •				• •		• •			•				
			•			•	• •			•						•	• •					•					•	• •	•		•	• •									
			•	• •									• •															• •				• •		• •		• •					
•	•	•	•			•	• •			•	•	•			•	•	• •	•	•		•	•	• •				1	• •	•		•	• •	•	• •			•	•	•		