

Eg. $\mathbb{Z}_{32} = \{0, 1, 2\}$ (ember addition mod 3) is isomorphic to $A_2 = \langle (123) \rangle = \{ (23) , (132) \}$ (132) (123) (132) 0 () (123) (132)
(132) (132) $\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)^{2}+\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)^{2}+\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)^{2}+\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)^{2}+\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)^{2}+\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac$ (123) (123) (132) (132) (132) \therefore ω ω ω^2 We say two groups G, H are isomorphic $(G \cong H)$ if
there exists a bijection $\phi: G \rightarrow H$ such that $\phi(xg) = \phi(x)\phi(g)$ operation Coperation $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\phi(x)$ $\phi(x)$ Satisfying $\phi(x+y) = \phi(x) \circ \phi(y)$ Au isomorphism $\phi : \mathbb{R} \longrightarrow (0, \infty)$, $\phi(x+y) = \phi(x) \phi(y)$ is defined by $\phi(x) = e^x$ unter unterstigliertien $e^{k+1} = e^x \cdot e^y$
addition untiplication \mathbb{R} # \mathbb{R}^2 $\ell_{n} = \phi : (0, \infty) \longrightarrow \mathbb{R}$ since R (reels under addition)
has only one element of finite order
sheneas R" has two dements of finite order: ±1

is *isomorphic* to $\frac{1}{a}$ $\begin{array}{|c|c|c|} \hline a & b & c & a \\ b & c & a & b \end{array}$ $6(1)=6$ c c
 $(2)=9$ b h $6(2) = 6$ $\mathbb{Z}_{3\mathbb{Z}}$ $\frac{1}{\sqrt{1-\frac{1$ Every group of order 1 is isomorphic to \mathcal{P} then multiply both sides by \vec{c} on the right $a(c\vec{c}') = b(c\vec{c}')$ e e a b Every group af order 3 a = b
a a b e is cyclic (isomorphic to $\frac{z}{z}$ under addition).

e a b c
e a b c Klein group e e a b c Cyclic group a a e c b
b b c e a four group $h \perp h$ $b \in e$ of order 4 ^C ^e ^a ^C e ⁹ ^C c ^b a e $non-identity$ $c \mid c \mid a \mid b$ Two cases : either all elements of G have order 2 , or G has an element not of order 2 . Theorem: There are exactly two groups of order 4 up to somorphism: the Klein four-group and $I = \frac{1}{16}$
 $I = \frac{1}{16}$ the cyclic group of order 4. of order 5 $\langle a \rangle = \{e, a, a, a, a, a^3, a^4\}$ abed
abed is not a
eede It Be
cdae It Be group ! ıp a d a c I $\overline{}$ is a Mdig quasigion / e , it is a loop in fact since it his (its Cayley table is ^a Latin nonidentity $\begin{array}{ccc} c & i & a & left & inverse \\ 0 & 1 & b & c & square \end{array}$ for $\begin{array}{ccc} c & c & b & b \\ 0 & 0 & 1 & b & c \end{array}$ for b ($cb = e$) but not Theorem If every dement of g g roup G for h (c) $e \in G$, but med a permutation of $e_i a_i b_j c_i d$). Theorem if every demandent of a group G
has probe 2 then G is abelian.
has probe 2 then G is abelian.
Proof (Note: x = e = identity for every $x \in G$). (bc=a).
Coof (Note: x = e = identity for every $x \in G$). (bc=a). ^a right inverse for ^b Proof (Note: $x^2 = e = id$ ewoldty for every $x \in G$) (bc= a). This loop is not associative \hbar
 $\frac{1}{100}$ $x^2 = e$ = identity for every $x \in G$. (bc=a).

Then $(xq)^2 = xyxy = e$ 30
 $xey = xy$. \Box $eg.$ (cajd = dd = c
c(ad) = ch = e Let x.g e G. Then (xg) $= x^{3}$ $xy = e^{x}$ so $= e^{x}$ b $= e^{x}$ $yx = x^2y + 2y = xy$ I
IXY
IXYY xie yse wez
xie yse y :
In such groups, $\tilde{x}' = x$ for all $x \in G$.

