

Orbits and Stabilizers for Group Actions Eg $G =$ symmetry group of $3\pi^2$ $G < S$ $G = \langle (1234), (13) \rangle$
 $G =$ permutes the four vertices transitively (meaning if $x, y \in \{1, 2, 3, 4\}$
 $g \in G$ such that $g(x) = y$). a dihedral group of For legal moves of a Rubik's cube, the group of all moves does not permite the 26 small cubes
(the group has three orbits of size 12, 3, 6)
A group action is transitive & there is only only one orbit $(0)(z) = 2$
A group act The stabilizer of x is stable (x) = $G_x = \{ g \in G : g(h) = x \}$ $\le G$ (a subgroup) eg in the dihedral group above, Stab₆(2)= $G_2 = \{$ all elements of 6 fixing 23 = {(), (13)}
Stab₆(1) = {(), (24)} = Stab₆(3) = < (24)} = = < (1) $= \langle (13) \rangle$ The orbit of x is $O(x) = \{g(x) : g \in G\}$ In this case there is only one orbit $\mathcal{O}(1) = \{1, 2, 3, 4\} = \mathcal{O}(2) = \mathcal{O}(3) = \mathcal{O}(4)$ Theorem If G permites $X = [n] = \{1, 2, ..., n\}$ then for every $x \in X$, $|\text{Sha}(x)| |O(x)| = |G|$. $\begin{array}{ll}\n\text{Lu} & \text{out} & \text{dihedro} \\
\text{154a6} & \text{(x)} = 2 \\
\text{185a6} & \text{(x)} = 2 \\
\text{186a6} & \text{(x)} = 2\n\end{array}$

Application to graph theory: computing the number of automorphisms of a graph. Eg. $\Gamma = \prod$ has four automorphisms. Its automorphism group is a Klein four-group 4 5 6 $G = \langle (13)(46), (14)(25)(36) \rangle$ = {(1, (13)(46), (14)(25)(36)

6 has two orbits on vertices: {1, 3, 4, 6}, 12, 5}
 E_3 . P = {1, 3, 9}

1 has automorphisms including (0.1 2 3 4)(5 6 7 8 9)

(0 5)(1 8 4 7)(2 6 3 9)

(0 5) -4212 is the Peterson graph How many autoncerplisaire does P have?
Aut P = { automorplisms of P} $\leq S_0$ actually S_0, S_1, \ldots, S_n Is Aut $P \cong S_{5}$? $|$ Meorem $|AutP| = 120$. Proof First enumerate orbits of $G = AutP$ on the vertex set $\{0, 1, 2, ..., 7\}$
There is only one orbit by considering the dihedral subgroup of order 10 and $10^{x/2}$ =120
(0.5)(1.8.4.7)(2.63.9), So G is transitive on vertices

 G_{o} = Stab_c(o) 4922 We show $\{1,4,5\}$ is an orbit of G_0 Clearly 1,4 are in Also 5 is in the same orbit as 1 (under Go) since $\frac{14}{3}5$ Since $\frac{14}{3}5$ is an orbit of 6_{0} , $|6_{0}| = |\frac{5}{3}|\frac{1}{6}$ (i) $|0_{0}(i)|$
= $3|6_{0,1}| = \frac{3}{4} = 5$ = $3|G_{0,1}| = 3x4=12$ Does $G_{p,1} = 5x4=12$
Does $G_{p,1} = 5x4=12$
 $G_{p,1} = 5x4=12$
 $G_{p,1} = 5x4=12$ $\begin{array}{ccc} \begin{array}{ccc} 4 & 0 & 0 & 2 & 2 & 6 & 7 & 8 & 4 \end{array} & \begin{array}{ccc} 6 & 6 & 2 & 6 & 7 & 8 & 4 \end{array} & \begin{array}{ccc} 6 & 6 & 6 & 6 \end{array} & \begin{array}{ccc} 6 & 6 & 6 & 6 \end{array} & \begin{array}{ccc} 6$ $G_{o,1,2} = \{g \in G : g(o)=o, g(i)=1, g(o)=2\}$ Stab (3)
1 E_{1,2} $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (3 7) (4 5) (8 9) 6 $G_{0,1,2}$
(8 1 = $\{3,7\}$) $|G_{R,1,2}| = |S/kb_{C_{Q,1,2}}(3)| |G_{G_{Q,1,2}}(3)| = 2 |G_{Q,1,2,3}| = 2x/22$

P^ has autonomplism group G= Ant [Which is \mathcal{H}_{φ} In the
same way Klein fourgroup (14) (46) $5¹$ the si Proof: $21,3,4$ $i5$ \mathcal{C} $G_1 = \frac{5}{2}$ $\frac{5}{2}$ $\frac{6}{5}$ G). = Oli $= 4$

In GL, (F), any two conjugate matrices have the same trace and teleminant eg in $GL_2(F)$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are not similar conjugate to the devicity is itself) $+(AB) = +(BA) = \sum_{i,j} a_{ij} b_{ji}$ If $A = MBM^{-1}$ then $AM = MB$, det $(AM) = det(MB) = det(M)det(B)$. $A = \lambda I = M(B - \lambda I) M^{-1}$ MBM - $\lambda MIM^{-1} = A - \lambda I$

(Avolher Cayloy) History of Group Theory (finite vs. infinite groups) Historically, before we had axioms for group theory, we considered permitation groups.
(subgroups of S.). This was motivated by the problem of finding roots of polynomials we considered permitation groups where $\sqrt{17}$ is the positive voot of $x^2-17=0$. Rects of $x^2 + 5x + 2 = 0$ are $\frac{-5 \pm \sqrt{17}}{2}$ of unics $ax^3+bx^2+cx+d=0$ Similar foruntes exist for finding roots No such formula exists for roots and quantics $ax^4+bx^2+cx^2+dx+e=0$. of a general quintic $ax^5 + bx^4 + cx^3 + dy^2 + ex + f = 0$. S Evanste Galois The roots of a polynomial $f(x)$ of dogreen can be expressed explicitly.
(using $f(x) = f(x)$ if the Galois group of for is solvable.
The Galois group is the good of permitations of the roots of for) $\beta = \frac{-5-\sqrt{17}}{2}$ $x = \frac{-5 + \sqrt{17}}{2}$ $eg \quad x^2 + 5x + 2 = (x - x)(x - \beta)$ There is an antomorphism of C interchanging a, B.

Selving systems & PDE's (specifically, explicit/exact/analytic solutions) Sophus Lie
Lie groups (algebras Axioms of Group Theory came after all these examples. Eming Noether In $f(w)$ 3 #3, G= GL(Fg) is permitting the 25 vectors of $F_5^2 = \{(\begin{matrix} x \\ y \end{matrix}) : x, y \in F_5 \}$.
 $0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is the zero vector. $\binom{3}{100}$ Similar 40 #3(c).) If $v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ then $G_v = \begin{cases} \begin{bmatrix} a & 0 \\ c & 1 \end{bmatrix} & a_1 \in F_v \text{ with } a \neq o. \end{cases}$ $|G_{\mathbf{v}}| = 20$ $|G| = 480$ $\left($ do this in (a)). $[0_c(v)] = 24$. If $w = \begin{pmatrix} b \\ d \end{pmatrix}$ is any nonzero vector in F_5^2 flen there exists $u \in F_5^2$ which is not a scalar numbigle of w (there are 20 possible clusices for $w(y)$. So 4, w
form a lassis for H^{-2} . Then $A = [u/w] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible and $Av = w = \begin{pmatrix} b \\ d \end{pmatrix}$. $|C| = |C_{v}||C_{2}(v)| = 20 \times 24 = 480$ What is a soliable group?

S₅ has composition services $S_{5/A_{5}}$ = 2 $\langle 0 \rangle$ $\langle 4, 4 \rangle$ $145/(6) = 60$ $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Ag has only two normal subgroups: < (1>, Ag. It G is any group then G has a Composition series $146.1621...1656$ where 6.6 is a simple group ie. vil cannot find any normal subge The simple groups are: · the cyclic groups of prime order. These are le only abelian single groups.
• the nonatolian single groups. Classification of the finite simple groups.
(CFSG) was the main goal of group theory prior to the 1980's.
This is

Roughly, the finite simple groups are A., n = 5 (important: polynomials of degree n = 5 cannot be
explicitly solved in general) certain matrix groups over finite fields 26 exceptional simple groups, up to and including the Monster M, MI= 808, 017, 121, 791, 512, 875, 886, 459, 901, 961, 96, 957, 005, 754, ె శెంక్, రెలిలి, <u>రెలిలి</u> రెలిలె 8-10 am Fri Dec 15 here (BU 209) Officially our exam is 8-10 am Foi Dec 15 $If a room is taken, look for a note on.$ note on the dest. G decomposes into a composition series If 6 is any finite group then where $G_{i-1} \lhd G_i$ with no normal subgroups $1 \leq G_1 \leq G_2 \leq \cdots \leq G_k = G$ These are grotient groups' Given the northinal vormal subgroup).
These quotient groups are the composition factors of G.
G is solvable Fall its composition factors are cyclic of prime order.

Abelian groups are solvable. Sn is solvable for $n \leq 4$; Sn is nonsolvable for $n \geq 5$ eg. 144325 $\begin{array}{c}\nA & A_5 & A_6 \\
\hline\nC & C_6 & C_7\n\end{array}$ Simple groups are important building blocks of all finite groups. As cyclical The first major result (before (FSG) : Walter John Just like prime numbers are building blocks of integers. Just like prime number
The first major result
Theorer (feit, Thomp) John ^G. Thompson

Eg consider Sn which is about as nonabelian as possible.
For $n \ne 2,6$, Sn has n! antomorphisms, and they are all inner. S3 has exactly 6 automorphisms permitting the three involutions in all 3!=6 $eg.$ $\phi: S_3 \to S_3$, $\phi((12)) = (12)$, $\phi((13)) = (23)$, $\phi((23)) = (13)$. This délines an automorphism of S_3 , namely $\phi = \psi_{(2)}$ $S_2 = \langle (z) \rangle$ is abelian. The only automorphism of S_2 is the identity ϕ ((1) = (1)
 ϕ ((12)) = (12) ϕ = 2/₁ = 2/₁₂ Every automorphism of Sy is inner but there is only one outomorphism, not $|S_6| = 6! = 720$. S_6 has 1440 antomorphisms, haft of which are inner (they come from $\{f_6\} = 9 \in S_6$) look at Test
We gave an automorphism of of S₆ Hat maps a 3-yile to another *element*