

A matrix in GL2(IR) is conjugate to [0-1] IR it has trace 0 and determinant -1.
If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2(\mathbb{R})$ then A has characteristic polynomial $f(x) = det(xI-A) = det(\begin{bmatrix} x & o \\ o & x \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix})$
$= \begin{vmatrix} x-a & -b \\ -c & x-d \end{vmatrix} = (x-a)(x-d) - bc = x^{2} - (a+d)x + (ad-bc)$ $+A det A Some books define the characteristic polynomial Cayley Hamilton Theorem (look it up in any linear algebra book) of A as det(A - xI) = (-i)^{n} det(xI - A)If f(x) is the characteristic polynomial of an nxn matrix A, then f(A) = 0.$
In the 2×2 case, $A^2 - (4rA)A + (dotA)I = 0$ holds as we compute here: $A^2 = \begin{bmatrix} a & 6 \\ c & d \end{bmatrix} \begin{bmatrix} a & b_1 \\ c & d \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+bd \\ ac+cd & bc+d^2 \end{bmatrix}$ $A^2 - (4rA)A + (dotA)I = \begin{bmatrix} a^2+bc & ab+bd \\ ac+cd & bc+d^2 \end{bmatrix} - (a+d)\begin{bmatrix} a & b_1 \\ c & d \end{bmatrix} + (ad-bc)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a^2+bc - (a+d)bc + d^2 \\ ac+cd - (a+d)c & bc+d^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
If $A \in GL_2(\mathbb{R})$ has trace 0 and determinant -1 then it satisfies $A^2 - 0A - 1I = 0$ so $A^2 = I$ so in the group $GL_2(\mathbb{R})$, A has order too 2. (tr $I = 2$, not 0) f(x) = det(xI - A) may or may not be the smallest degree polynomial that has A as a root. The minimal polynomial of A, $m(x)$, is the monic polynomial of smallest degree satisfying $m(A) = 0$. Facts (see a linear algebra book):
Roots of $f(x)$ are eigenvalues of A. m(x) divides $f(x)$ i.e. $f(x) = h(x) m(x)$ for some monic polynomial $h(x)$ (often $h(x)=1$, $m(x)=f(x)$). Every eigenvalue of A is a root of $m(x)$.

Theorem let A & GL_ (R). Then the following are equivalent:	
(i) + A = 0, dat A = -1	
(ii) A has order 2 but $A^{+} - 1$	
(iii) A is conjugate to [0-1] Je have proved (i) => (ii). And (iii) => (i) is easy. Assume A = M[0] M ⁻¹ for some MEGL(R)	
Then $+A = +(M[b^{\circ}]M) = +(MM[b^{\circ}]) = +[b^{\circ}] = 0$.	≪~~~~/)
tr AB = tr BA if A is mixin, B is nixin (Short proof: see linear algebra. Both equal to g	
$det A = det M det \begin{bmatrix} i & 0 \\ 0 & -1 \end{bmatrix} det M = -1$	
MM ^T =I	
$det (M)det (M^{-1}) = det I = I$	
Ydet M If A has order 2 then A= + A is a root of x-1	= (x+1)(x-1)
s the minimal poly. of A divides g? 1: m(x) = x? 1 or x+1 or x1 or 1.	
If $m(r) = 1$ then $m(A) = I = 0$. No!. A T (Ab! T has order 1 not order 2)	• • • • •
If $m(x) = x_{-1}$ then $m(A) = A - I = D$ then $A = I$ (100. I accounting)	
If $m(x) = x+1$ then $m(A) \doteq A + I = 0$ so $A = -1$ (NO. up as properly) $A = -1, \Rightarrow (i)$ holds	
So m(x) = x -1 divises sur, is in the eigenvectors corresponding to 1,-1 i.e. Au=u, Av So ±1 are eigenvalues of A. Let u, v be eigenvectors corresponding to 1,-1 i.e. Au=u, Av	= -V.
Let M = [u v] (2x2 metrix having 4, v es columne)	
$AM = \begin{bmatrix} Au \\ Av \end{bmatrix} = \begin{bmatrix} u \\ -v \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = M \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \implies A = M \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} M^{T} i.e. (iii) holds.$	

There are two conjugacy classes of doments of order 2 in 6=GL_(R):
• $\xi - I = \begin{bmatrix} i & i \\ 0 & -1 \end{bmatrix}$ is in a class by itseff since $-I \in Z(G)$
All matrices conjugate to ['] i.e. all matrices with trace O and determinant -1.
$\frac{1}{2} = \frac{1}{2} = \frac{1}$
Consider the dihedral group G of order & (the symmetry group of a square) so (GI = 8. Let's sick generators r, y for G where x is an element of order 4 and y is a reflection (order 2).
$G = \{1, x_1, x_2^2, x_3^3, y_1, x_2^2, x_3^2, y_1^2, y_2^2, x_3^2, y_1^2, y_2^2, x_3^2, y_1^2, x_3^2, y_1^2, x_3^2, y_1^2, y_1$
$x^{i}x^{j} = x^{ij}$ $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1$
x' x' = x' y) If you more g past x, $(J'' g'' g'' g'' g'' g'' g'' g'' g'' g''$
$x'y \cdot x' = x'y$ it reverts $x' = x'$ $(yxy)'$
teres x ⁱ y. x ^j y = x ⁱ j − teres
Presentation for G: G = $\langle x, y \rangle$: $x^{\dagger} = y^{2} = 1$, $yx = x^{2}y^{2}$
generators relations 2: y = 1 y
$g = \frac{1}{2} $
x_{ij} . $x_{ij} = x^{-1}y$
$\begin{cases} x & 4 \\ x^3 $
$\begin{bmatrix} x^2 & 2 & G, \\ G & = 8 \end{bmatrix}$ $\begin{bmatrix} (y) = \{1, x^2, y, x^2, y\} \end{bmatrix}$
$\begin{array}{cccc} q & y & z & \langle x, y \rangle & \langle \langle x, y \rangle = 1 \\ \end{array} \qquad \qquad$
$(x_{ij} \leftarrow x_{ij}) = (x_{ij}) = (y_{ij}) = $
$\begin{cases} \frac{1}{3} $
TP 1012 5 the conjugance class of a fr 10(0) 1 (a) to 1
It old is in a land and a geo man logil (gi) = [61. eg 1×8-8

Cosets and lagrange's Theorem
TP 11 is a subsect of G (untiplicative, at least generically) then a coset of H in G is a
subset of the for all = 2 ah : he H ?. Note: gH G , not a subgroup in general.
En taken HE Zant in G = S. List all cosets of H in G. There are exactly three cosets of H in G.
$H_{13}H_{1$
() H = () (), (12)3 = ((), (12)3) (F is partitioned into three cosets, each of size 2.
$(12)H = (12)\{(1, (12)\} = \{(1), (12)\}\}$
(13) H = (13) (1, (12)) = ((13), (123)) (123)
(23) H - (25) ((1), (12)) - ((25)) ((52))
$(123) H = (123) \{ (1, (12) \} = \{ (123), (13) \}^{2} $ (1)
$(132)H = (132)\{(), (12)\} = \{(132), (23)\} = (Kecall: (Ke$
of a without any overlap.)
The next of a culture HSG pertition the dements of G
Theorem the cosets att and bit overlap of (since e = H). Suppose two cosets att and bit overlap
HOLL a as at = lh for some h, hz EH, so att = gh, H = gH TE hEH He
i.e. $g \in att(16t1 > 6 g = uni = on c$ ($a = ak^{-1}$ and $b = ak^{-1}$) and $b = gk_2 H = gk_1 - f(b = h_1 + h_1 + h_2 + h_2$
f(a - gh) = f(a
(weden fit were of the fit of th
Proof A bijection H -> gtt is given by h -> gh. An inverse map given by
is given by $x \mapsto g'x$.
As a corollary, we obtain lagrange's Theorem: $ G = (no. of cosets of H in G) \times (size of each coset)$
the index of H in G [H]
(denoted [G:H] H] (denoted [G:H])

Eq. In Sa. the set of all even permitations is a subgroup An. The set of all odd permitations is a coset of A	(n≥2)
So has two cosets of An: () An = An = Seven per mutations ? (12) An = 2 add permutations?	· · · · · · · · · · · · · · · · · · ·
$ S_n = n! = [S_n : A] (A_n)$	
T the addition around of R ³ , a line through the onigin is a subgro	της
A coset of this line lis a line parallel to the original line. The parallel lines to I give a profition of R ³ .	
Eq. $G = S_n$ is partitioned into cosets of $H = G_1 \cong S_{n-1} = \begin{cases} permutions of 2, 3,, n \\ G = G + U = G + U = U \\ \end{pmatrix}$	while fixing 1 ?
eq $\sigma_{i} = ()$, $\sigma_{z} = (i2)$, $\sigma_{z} = (i3)$,, $\sigma_{n} = (in)$ $\sigma_{k} H = Sall \sigma \in G : \sigma(i) = k $	· J · · · · · · · · · · · · · · · · · ·
Proof If $\sigma \in G$, $\sigma(i) = k$ then $\sigma' \sigma_k(i) = \sigma'(k) = i$ so $\sigma' \sigma_k \in H = G_i$ so	$\sigma'\sigma_k H = H so \sigma_k H = \sigma H$.
H = (n-i)!, $[G:H] = n$, $ G = H [G:H]n! = (n-i)! * n$	

Left cosets vs. Right cosets of HSG	Fo G= So	$H = S_{a} = G_{a}$
Left cosets $gH = \{gh : h \in H\}$, $g \in G$		
Right cosets Hg = {hg : h€ H }	Left cosets	(12) (132) (23)
[G:H] = index of H in G = complex of left orgets of H in G	Right cosets	() (13) (12)
= unmber of right cosets of H in G	G = {	reG: o(k)=k}
All cosets of H in G have size $ qH = Hq = H .$	\$	abilizer of G
If G is abelian, then $gH = Hg$. We say $H \leq G$ is <u>normal</u> if $gH = Hg$ for all $g \in G$ (left and right cosets are the same). Eg. $G = S_4$, $K = \langle (12)(34), (13)(24) \rangle = \{(1, (12)(34), (13)(24), (14)(23)\}$ is a Klein four-subgroup of G.	$H = \{(), (rz)\}$ $H() = \{(), (rz)\}$ $H(rz) = \{(), (rz)\}$	
Proof IF g G and kek then gkg eK so gKg CK. (gKg = so gKg g C Kg ie. gK C Kg. Similarly, gK 2 Kg	= {gkg': ke K} so gK = Kg. : conjugate of H.) \Box (conjugating by $g \in G$)
Proof Given hi, $h_2 \in H$ so $gh_{\overline{g}}'$, $gh_{\overline{g}}' \in gH_{\overline{g}}'$, we have $(gh_{\overline{g}}')(gh_{\overline{z}}g')$ so $e \in H$ and $geg' = e \in gH_{\overline{g}}'$. Also if $h \in H$, so $gh_{\overline{g}}' \in gH_{\overline{g}}'$.	= $g h h g \in g H g$ then $(g h g')' =$	Take $e \in G$ as the identity, $gh'g' \in gHg'$.

• •
eG-
• •
• •
• •
• •
• •
• •
• •
• •
• •
•

theoren	n Every	Conjega	y clas	ss in	G ha	S Size	Card	i naloty	$) \alpha v \alpha$	king I	- !.	• •			• •			
	· · · · · · · ·			classe	s {){ }	Sliz) (3A) (3)/24)	(14)(2)	s){	5(12-	9) (132)	(14	3) (2	34)	2 1 1
. - 9 A	ty need in	line line	garg			~??.	ζ		· · · ·)
{ (14)	٤), (123),	(134), (2	=15) {	•								•••						
								 (12.2)	(10)/20	(120) =	(-1)		(13)	(24)				
Q	123) (12)(34	1) (123)		23)(14)= (1	4)(23);;	((32)	(12)(54)	(152) -		24) -			•			
		(132)										• •				• • •	••••	• •
(12	28)(124)((123) =	(23*	1)														
	5 (124)) is Gene	ingato	40 (K42)	since	they	have .	the sa	me Cy	cle H	ructu	re:					
			19,00															
(24)(12	2 4)(24)	= (142)	• • •							• • •			• • •	• • •	• •			• •
			1 C C C C C C C C C C C C C C C C C C C															
(14) (1	24) (14)	= (421)				• •				• • •				• •	• • •	• • •	
(14) (1 Eg. 5	24) (14) Theorem	= (421) Ag has) 2005	ubgrou	p of	order	a 6.			· · · ·	Partit	aning	Ģ	înto	(eft	Co Se	ts	••••
(14) (1 Eg Pool Suppos	24) (14) Theorem se G = Ag	$= (421)$ $A_{q} has$ $has a$) no s norme	ubgrou el Suk	p of group	order KJ	r 6. F of	- orde	a, الا ا	= 6 .	Partiti 1: C	ioning	G-	into	left 3 as	©50 G =	ts Kv	Kg
(14) (1 Eg Boot Suppos G = 1	24) (14) Theorem se G = Ag KUgK	= (421) Ag has has a volere) NOS NOrma g∉k	ubgrou el suk	р о р дотр ([6: h	order $K \leq \frac{16}{1K}$	r = 6. r = 6. r = 1.	$r^2 = 2$	n K) and	= G . d parti	Parkiti tion G	into	6- right	înto Coset	(eft 75 as	Cose G =	ts Kv	Kg
(14) (1 Eg Boot Suppos G = 1 so 9K	2 4) (14) Theorem se G = A _q K U g K ' = Kg	= (421) Aq has has a volere So gKg [°]) NO S NOrma g∉k = K.	ubgrou el suk	р о р дютр ([6: h	$K \leq \frac{1}{100}$	$\frac{1}{2} = \frac{1}{2}$	r^2 orde $r^2 = 2$	en K) and	= 6 1 part	Parkiti tion G	into	6- right	înto Coset	(eft :s as	@50 G =	ts Kv	Kg
(14) (1 Eg Boot Suppos G = 1 so gK	2 4) (14) Theorem se G = Ag K U g K ' = Kg	= (421) Aq has has a volere So gKg [°]) norms g∉k = K.	ubgrou rl Suk	р о р дотр ([6: h	$K \leq c$ $K \leq $	$\frac{1}{2} = \frac{1}{2}$	r^2 orde	en K) and	= 6 d parti	Partitu tion G	into	G- rìght	înto coset	(eft 3 as	©50 G =	ts Kv	Kg .
(14) (1 Eg Ref Suppos G = 1 So gK	$2 + (14)'$ Theorem $Se G = A_q$ $K \cup g K$ $' = Kg$	= (421) Ag has has a volere So gKg [*]) norms g¢k = K.	ulogoou el suk	р о р дгохор ([6: 1	$K \leq c$ $< \frac{1}{7} = \frac{16}{1k}$	2 6. 6 of 1 = 1	$rac{2}{6} = 2$	r K) and	= 6 1 parti	Partiti tion G	into	6- right	înto Coset	(eft 3 as	©50 G =	ts Kv	Kgb
(iq) (1 Eg But Suppos G = 1 So gK	$2 + (14)'$ Theorem $5e G = A_q$ $K \cup g K$ $' = Kg$	= (421) Aq has has a volere So gKg [°]) norma g¢ k = K.	ubgrou el suk	р о р дюнр ([6: h	$r = \frac{16}{1k}$	2 6. 6 of (] = 1	$rac{1}{2} = 2$	z. K .	= G d parti	Partiti tion G	indo	G- right	înto coset	(eft is as	(c) Se (c) =	ts Kv	Kg
(iq) (1 Eg Roof Suppos G = 1 so gK	$2 + (14)$ Theorem $Se G = A_q$ $K \cup g K$ $= Kg$	= (421) Aq has has a volere So gKg [°]) no s norms g∉k = K.	ubgrou rl Suk	р о р дотр ([6: 1	$radex}{K \leq 1}$		$rac{2}{6} = 2$	en K) and	= 6 1 part	Partiti tion G	ido	G- rìght	îv to coset	(eft s as	C =	ts K v	y de la companya de la compa
(iq) (1 Eg Roof Suppos G = 1 so gK	2 4) (14) Theorem se G = Aq K U g K ' = Kg	= (421) Aq has has a volere So gKg [*]) norms g∉k = K	ubgrou rl Suk	9 of group ([6: 1	rades $K \leq c$ $\langle 7 = \frac{16}{1k}$		$rac{2}{6} = 2$	z K) and	= G f parti	Partiti tion G	inte	G- rìght	into coset	(eft s as	(c) se (c) =	ts K v	La contra c
(iq) (1 Eg G = 1 So gK	2 4) (14) Theorem se G = Aq K U g K ' = Kg	= (421) Aq has has a volere So gKg [°]) no s norms g∉k = K	ulogoon al Suk	9 of group ([6: 1	$r = \frac{16}{1k}$		$rac{2}{6} = 2$	z K -	= G parti	Partiti tion G	into into	G- right	înto coset	(eft is as	650 G =	ts Kv	Kg J

Let 6, H be groups (assumed to be multiplicative with identify elements efe G, eH EH).
A homomorphism $G \rightarrow H$ is a map satisfying $\phi(gg') = \phi(g)\phi(g')$ for all $g, g' \in G$.
Note: An isomorphism is the same thing as a bijective honomorphism
Ea $\phi: GL(F) \rightarrow F^*$ $\phi = det$
invertible multiplicative
orch a field F U elements of F
Properties: $\phi(e_{k}) = e_{\mu}$ $(\phi(e_{k}) = \phi(e_{k}e_{k}) = \phi(e_{k}) = \phi(e_{k}) = e_{\mu}).$
If $g \in G$ has order a then $ \phi(g) $ divides $n = g $. e_g . if $ g = G$ then $ \phi(g) $ has order $1, 2, 3$ or G .
$\phi(\bar{g}') = \phi(\bar{g})$ since $g\bar{g}' = e_{g} \Rightarrow \phi(\bar{g}\bar{g}') = \phi(e_{g}) = e_{H}$
The kernel of a homomorphism \$: G -> H is ker \$= {g \in G : \$(g) = e_{H} }. (Compare : the null space of a linear fransformation)
Theorem: ker et is a subgroup of G.
Proof If $g,g' \in \ker \phi$ then $\phi(g) = \phi(g') = e_{\varepsilon}$ then $\phi(gg') = \phi(g)\phi(g') = e_{\varepsilon}e_{g} = e_{\varepsilon}$ so $gg' \in \ker \phi$.
Since $\phi(e_6) = e_H$, $e_6 \in \ker \phi$.
If $g \in \ker \phi$ then $\phi(g) = e_{\mu}$ so $\phi(g') = \phi(g') = e'_{\mu} = e_{\mu}$ so $g' \in \ker \phi$. So $\ker \phi \leq G$.
Note: If \$ is one-to-one then ker \$ = Eeg3. Conversely, if ker \$ = Se3 then we show \$ \$ is one-to-one:
If $\phi(q) = \phi(q')$ then $\phi(\bar{q}'q') = \phi(\bar{q}') \phi(q') = \phi(\bar{q})' \phi(q') = e_q$ is $\bar{q}'q' \in \ker \phi = \{e_q\} = \{e_q\}$

The image of a homomorphism of: G > H then the image of (G) = { \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Proof Given two elements in \$(G), say \$(g), \$(g') for some g, g' & G, then
$\phi(q)\phi(q') = \phi(qq') \in \phi(G)$. Also $e_{\mu} = \phi(e_{G}) \in \phi(G)$. If we take any element in $\phi(G)$, say $\phi(q)$ where $g \in G$
then $\phi(g) = \phi(g') \in \phi(G)$. So $\phi(G) \leq H$.
Note: $\phi: G \rightarrow H$ is onto iff $\phi(G) = H$.
Eq. Define $\phi: S_4 \longrightarrow S_3$ as follows: Take $\pi_1 = (12)(34)$, $\pi_2 = (13)(24)$, $\pi_3 = (14)(23)$ in S_4 . These
form a conjugacy class in Sq $\{T_1, T_2, T_3\} = X$ (Really $\phi(\sigma) \in Sym X = Sym \{T_1, T_2, T_3\}$).
Given $\sigma \in S_a$ we have a map $X \rightarrow X$, $\pi : \mapsto \sigma \pi : \sigma$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{aligned} & \#((142)): & \pi_1 \mapsto (142)\pi_1 (142)^{-1} = (142) (12)(34)(42)^{-1} = (41)(32) = (14)(23) = \pi_2 \\ & \#((142)): & \pi_1 \mapsto (142)\pi_1 (142)^{-1} = (142) (13)(24)(42)^{-1} = (43)(12) = (12)(34) = \pi_1 \\ & \pi_2 \mapsto (142)\pi_2 (142)^{-1} = (142) (14)(23)(42)^{-1} = (42)(13) = (13)(24) = \pi_2 \\ & \pi_3 \mapsto ((42)\pi_3 (42)^{-1} = (142) (14)(23)(42)^{-1} = (42)(13) = (13)(24) = \pi_2 \end{aligned} $
\$ is onto Sz. (why? \$ \$ (Sq) is a subgroup of Sz. By Lagrange's Theorem, (\$(Sq)) is divisible by
$ \phi((13)) = (13) = 2$ and $ \phi((142)) = (132) = 3$ so $\phi(S_4) = S_3$.
$ke_{r}\phi = \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
(13 - ": "2) The image of a homomorphism of: G->H
et is a homomorphism; it is is a homomorphic image of G.

Fractional Linear Transformations (or Linear Fractional Transformations)	
A may RUEOS - RUEOS (actually a perimitation) of the form [cd]: x -> ax+h cx+d	there at hc =0.
$G_{L_2}(\mathbb{R}) = \begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ c & d \end{pmatrix} : a d - b c \neq 0 \end{cases}$ for actual invertible 2×2 real matrices.	· · · · · · · · ·
$\begin{bmatrix} a \\ c \\ d \end{bmatrix} \begin{bmatrix} a \\ f \\ s \end{bmatrix} (x) = \begin{bmatrix} a \\ c \\ d \end{bmatrix} \begin{bmatrix} a \\ fx + \delta \end{bmatrix} = \frac{a \begin{pmatrix} a \\ x + \delta \end{pmatrix}}{c \begin{pmatrix} a \\ x + \delta \end{pmatrix} + d} = \frac{a (a \\ x + \delta \end{pmatrix} + \frac{b}{c (a \\ x + \delta)} + \frac{b}{c (a \\ x + \delta)} = \frac{(a \\ x + \delta)}{(a \\ x + \delta)} = \frac{(a \\ x + \delta)}$	
= [ax+br a p+b8] (x) = [cx+dr cp+d8] (x) (one property with multiplication of actual 2×2 investible matrices:	· · · · · · · ·
$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & s \end{pmatrix} = \begin{pmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + ds \end{pmatrix} $	
We denote by PGL_(R) the group of all fractional linear transformations RU(2003 -> RU(2003) PGL_(R) = { [a b] : ab, c, d \in R, ad-bc = 0 }.	ie.
This is a homomorphic image of $GL_2(\mathbb{R})$ under the homomorphism $\phi: GL_2(\mathbb{R}) \longrightarrow PGL_2(\mathbb{R})$, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longrightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. This map is a homomorphism : $\phi(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \phi(\begin{pmatrix} aa+br & ab+bs \\ ca+dr & cb+ds \end{pmatrix})$	· · · · · · · · ·
$= \begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ \alpha + d\gamma & c\beta + d\delta \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \phi(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) \phi(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix})$	
This homorphism is puto PGL (R) by definition but it's not onto because $\varphi((\lambda c \lambda d)) = [\lambda c \lambda d]$	= [c. d.]
Since [r rd] (x) = rex+d - Lc d]	

$\begin{bmatrix} 3 & 4 \\ 1 & 7 \end{bmatrix} (5) = \frac{3 \times 5 + 4}{1 \times 5 + 7} = \frac{19}{12}$ $\begin{bmatrix} 3 & 4 \\ 1 \\ \infty \end{bmatrix} = \frac{3 \times 00 + 4}{12} = 2$ $\begin{bmatrix} 3 & 4 \\ 1 \\ \infty \end{bmatrix} = \frac{3 \times 00 + 4}{12} = 2$	$= \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$	(ad-bc = 0)
$\begin{bmatrix} 1 & 7 \end{bmatrix} \begin{pmatrix} 1 & 7 \\ 1 & 7 \end{bmatrix} \begin{pmatrix} 1 & 0 & 7 \\ 1 & 0 & 7 \\ 2 & 7 & 7 $	Æ ≥ fi	eld of order g
$\begin{bmatrix} x & -7 \\ 1 & 7 \end{bmatrix} \begin{bmatrix} -7 \\ -7 \end{bmatrix} = \frac{5(7)}{(x(-7) + 7)} = 0$	(GL_(F_)) =	$(\hat{q}^2 - i)(\hat{q}^2 - q)$
$\begin{bmatrix} 3 & 4 \\ 0 & 4 \end{bmatrix} (\infty) = \frac{3 \times 00 + 4}{0 \times 00 + 7} = \infty$	SL(E) =	$(q^2-1)q$ by q^2 .
Every fractional linear transformation is a permitation of RU 2003		
$PGL_2(\mathbb{R})$ is a group. $\begin{bmatrix} a \\ c \end{bmatrix} = add_{bc} \begin{bmatrix} a \\ -c \end{bmatrix} = \begin{bmatrix} -c \\ a \end{bmatrix}$		
The identity $\begin{bmatrix} 0 \\ 1 \end{bmatrix} (x) = \frac{1 \times x}{9 \times x + 1} = x$		
You can think of $PGL_2(\mathbb{R})$ as the same as $2\pi 2$ invertible matrices but with multiples i.e. $\lambda \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \lambda a & \lambda b \\ \lambda c & \lambda d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	iere we identity	ontero scalar
$GL_{2}(\mathbf{F}_{2}) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\} \stackrel{P}{=} SL_{2}(\mathbf{F}_{2}) = (2^{2}-1)(2^{2$	2)=3×2=6.	· · · · · · · · · ·
$F_2 = \{0, 1\}$ is the field of order 2:	· · · · · · · · · · ·	
$PGL_{2}(\mathbf{F}_{2}) = \left\{ \begin{bmatrix} 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \end{bmatrix} \right\} = GL_{2}(\mathbf{F}_{2}) = SL_{2}(\mathbf{F}_{2})$	÷ 3	
Why? PGL2(F2) is a group of planutations of {0,1, 00} Sym {0,	1 003	
So PGL2 (F2) is isomorphic to a subgroup of S3. F2	£ 0,1,003	
$ GL_2(F_3) = (3-1)(3-3) = 8\times6=48$ $ DC (F_3) = 48 - 26 = DC (F_3) \approx 8$	2(#3) is a group of 0 #1 End - 50	pormitations
$ F_3 = \{0, 1, 2\} \qquad = 2 = -1 = 2 = 24 $, <u>, , , , , , , , , , , , , , , , , , </u>

Π	P. 01 8	1																	
$\pi_{4} = 10, 1, \alpha, \beta_{3}$	field of o	der 4					• •												
+101 × B	× 10 1 ~ p						• •												
00120	0 0 0 0 0						• •		• •	• •	• •	• •	٠		• •				•
	1 OI XB						• •			• •	• •	• •		• •	• •		• •	• •	•
Barro	a lo a b i																		
	pro pri a																		
$[GL_{1}(F_{4})] = (4^{2} - 1)$	$(4^2 - 4) = 15$	× 12 = 1	80								• •	• •			• •				•
151 (E) - 180									• •	• •			•	• •	• •				
$\left(\sum_{q} \left(\prod_{q} \right) \right)^{-} = \frac{1}{3}$	60																		
$ A_{5} = \frac{5!}{2} = 60$																			
										• •		• •		• •	• •				
$\Sigma L_{1}(H_{1}) \cong A_{1}$							• •	• • •		• •	• •	• •			• •	• •	• •	• •	•
2 4	1					0													
$PSL_{2}(\overline{H}_{4}) = \begin{cases} c' \\ c' \end{cases}$	d]: ad-bc	≓ (,	a,6,c,d	€ ∰ }		SL2 (A	F ()	· · ·	• •	• •	•••	• •			• •				
$PSL_{2}(F_{4}) = \left\{ \begin{bmatrix} a \\ c \end{bmatrix} \right\}$ $The map \left\{ \left(F_{4} \right) \right\}$	b]: ad-bc -> PS((F)		a,6,c,d	€₩	≦ 00 øn	SL ₂ (A	(4) 84 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ations	r r r f	r F) Şaq	, . } ='	r S	 		e R		• •	•
$PSL_{2}(H_{4}) = \begin{cases} \begin{pmatrix} a \\ c \end{pmatrix} \\ c \end{pmatrix}$ The map $SL_{2}(H_{4})$	d]: ad-bc $\rightarrow PSL_{2}(F_{4})$	≓ (,.))	a,b,c,d	€ ∰ } as a	≌ ll ev	SL ₂ (A	4) enni	ations	of	n F	مع ب	} } 	Ę	0, 1	, «,	ß,	∞ 3	· ·	•
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ The map $SL_{2}(IF_{4})$ $\begin{pmatrix} a \\ c \\ d \end{pmatrix}$	$ \begin{array}{c} b \\ d \end{array} : ad-bc \\ \rightarrow PSL_{2}(F_{4}) \\ \longmapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix} $	= (, , , , , , , , , , , , , , , , , ,	a,b,c,d ecting	€₩ as a	≌ ll ev	SL ₂ (A	4) annt	ations	of	1 	مه ک ا	} = 1 } 00	2	0, 1	, ,, ≺, , ,	¢, ,	æ}	· · ·	•
$PSL_{2}(H_{q}) = \begin{cases} a \\ c \end{cases}$ The map $SL_{2}(H_{q})$ $\begin{pmatrix} a \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} a \\ c \\ d \end{pmatrix}$	b_{d}]: ad-bc $\rightarrow PSL_{2}(F_{4})$ $\mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	= (, , , , , , , , , , , , , , , , , ,	a,b,c,d ecting	etta }	ll ev ll ev	SL ₂ (h ren p	4) annt	ations	of		ن موع بن م	}, = }, = ∞0 , ,	2	0, 1	, ≺, , ≺, ,	¢,,	∞} 3	· · · · · · · · · · · · · · · · · · ·	•
$PSL_{2}(H_{q}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(H_{q}) = \begin{cases} a \\ c \\ d \end{cases}$ $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (x) = \frac{ x x+1}{0 x x+1}$	$ \begin{array}{c} b \\ d \end{array} : ad-bc \\ \rightarrow PSL_{2}(F_{4}) \\ \longmapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ \stackrel{f}{\leftarrow} d \end{bmatrix} $	= (,)	a,b,c,d icfing)(α, β)	€₩ ας (∞)		SL ₂ (A	4) ann	ations,	of		U §00) 00 0	2	0, 1	, , , , , , , , , , , , , , , , , , ,	ę,	a }		•
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (x) = \frac{ xx+1 }{0x\pi + 1}$	$b_{d} : ad-bc$ $\rightarrow FSL_{2}(F_{4})$ $\mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $\frac{1}{1} = \pi + 1$	= (,) (0, i	a,b,c,d acting (α, β)	€₩	ll	SL ₂ (h ren p	4) 8	at ions	of			} = 00	2	0, 1	· · · · · · · · · · · · · · · · · · ·	¢,	<i>∝</i> ∎}		•
$PSL_{2}(IF_{q}) = \begin{cases} \begin{bmatrix} a \\ c \end{bmatrix} \\ c \end{bmatrix} = \begin{cases} a \\ c \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\$	$b_{d}]: ad-bc$ $\rightarrow PSL_{2}(F_{4})$ $\mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $f = x + 1$ $f = x + 1$	= (1) (0, 1 25 of line	a, b, c, d icfing)(α , β) is through	e Ff } as a (co) h the	€ ll ev o∼giv	SL ₂ (A ren p	(*) 8	ations,	of		U 500	} = 00		0, 1	، کې ۱	β,			
$PSL_{2}(IF_{4}) = \begin{cases} \begin{bmatrix} a \\ c \end{bmatrix} \\ c \end{bmatrix} \\ fhe map SL_{2}(IF_{4}) \\ \begin{pmatrix} a \\ c \end{bmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\$	b d]: ad-bc $\rightarrow PSL_{2}(F_{4})$ $\rightarrow [a b]$ $\downarrow = a b]$ $\downarrow = d]$ l possible slepp	= () (0, i 25 of line	a, b, c, d (α, β) (α, β) (α, β)	e Ff } as a (co) h the	€ ll ev orgiu	SL ₂ (A ren p	F) anni R ² 3	ations	đ		0 500	} = 1 00		0, 1	، مر , حر , حر , مر , م , م , م , م , م , م , م , م	ę,			
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(IF_{4}) = \begin{cases} a \\ c \\ d \end{cases}$ $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} a \\ c \\$	b d]: ad-bc \rightarrow PSL ₂ (F ₄) \rightarrow [a b] \downarrow = [a b] \downarrow = d] \downarrow = x+1 1 l possible slop	= () (0, 1 25 of line	a, b, c, d ecting $)(\alpha, \beta)$ & through	e	€ ll ev orgi	SL ₂ (A ren p	(R ²)	ations,			0 500	} = 00 0		0,1					
$PSL_{2}(IF_{q}) = \begin{cases} \begin{bmatrix} a \\ c \end{bmatrix} \\ c \\ fhe map \\ \begin{pmatrix} a \\ c \\ d \end{pmatrix} \\ \begin{pmatrix} a \\ c \\ d \end{pmatrix} \\ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \\ \begin{pmatrix} a \\ c \\ d \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \\ d \end{pmatrix} \\ \begin{pmatrix} a \\ $	b d]: ad-bc \rightarrow PSL ₂ (F ₄ \rightarrow [a b] $\downarrow = \chi + 1$ l possible slep	= (,) (0, i 25 of line	a, b, c, d icfing)(α , β) is through	e F ₄ } as a (co) 2 He	€ ll ev orgi	Sh ₂ (A	R ² 3	ations				} = 00		0, 1	· · · · · · · · · · · · · · · · · · ·	¢,			
$PSL_{2}(IF_{4}) = \begin{cases} \begin{bmatrix} a \\ c \end{bmatrix} \\ c \end{bmatrix} \\ \begin{pmatrix} a \\ b \\ c \end{bmatrix} \\ \begin{pmatrix} a \\ c \end{bmatrix} \\ \begin{pmatrix} a \\ b \\ c \end{bmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \\ \end{pmatrix} \\$	b d]: ad-bc \rightarrow PSL ₂ (F ₄) \rightarrow [a b] \downarrow = χ +1 1 l possible slope	= (,) (0, i 25	a,b,c,d icting)(α,β) & through	e	€ ev o~giu	Sh ₂ (A	~) anni R ² }	ations	of		0 500		5	0,1		ę,			
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(IF_{4}) = \begin{cases} a \\ c \\ d \end{cases}$ $\begin{pmatrix} a \\ c \\ d \end{pmatrix}$ $\begin{cases} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ x \\ T \\ T$	bd]: ad-bc \rightarrow PSL ₂ (F ₄) \rightarrow [a b] \rightarrow [a b] \downarrow = d] \downarrow = $x + 1$ l possible slep	= (,) (0, i 25 of line	a,b,c,d ecting)(α,β) e through	€	€ e~gi	SL ₂ (A	~) anni R ² }	at ions				} = 00	5		· · · · · · · · · · · · · · · · · · ·	¢, .			
$PSL_{2}(IF_{4}) = \begin{cases} \begin{bmatrix} a \\ c \end{bmatrix} \\ c \\ fhe map \\ \begin{pmatrix} a \\ c \\ d \end{pmatrix} \\ \begin{pmatrix} a \\ c \\ d \end{pmatrix} \\ \begin{pmatrix} a \\ c \\ d \end{pmatrix} \\ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \\ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \\ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \\ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \\ R \\ V \\ \{ \infty \\ \} = \begin{cases} al \end{cases}$	b d]: ad-bc $\rightarrow PSL_2(F_4)$ $\rightarrow [a b]$ $\downarrow = \lambda + 1$ $\downarrow = \lambda + 1$ $\downarrow possible slope$	= (,) (0, i 25	a,b,c,d icting)(α,β) e through	e Ff } as a (co) 2 He	€ e~giu	SL ₂ (A	R ² 3	ations				} = [00	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,1	- «, , , , , , , , , , , , , , , , , , ,				

Orbits and Stabilizers for Group Actions Eq. G = symmetry group of $\frac{3}{2}$, G < S_q, G = $\langle (1234), (13) \rangle$ a dihedral group of G permites the four vertices transitively (meaning if x, y $\in \{1, 2, 3, 4\}$ then there exists g \in G such that g(x) = y). For legal moves of a Rubik's cube, the group of all moves does not permite the 26 small cubes (the group has three orbits of size 12, 8, 6) 12+8+6=26. $0(1) = {all corner cubes}, (0(1)) = 8$ A group action is fremsitive if there is only only one orbit. 0(2) = 12. 0(3) = 6The stabilizer of x is $Stab_{\mathcal{C}}(x) = G_x = \{g \in G : g(n) = x\} \leq G$. (a subgroup) eg. in the dihedral group above, $\operatorname{Stab}_{G}(2) = G_2 = \{ all \text{ elements of } G \text{ fixing } 2\} = \{(), (13)\}$ $\operatorname{Stab}_{G}(1) = \{(), (24)\} = \operatorname{Stab}_{G}(3) = \langle (24) \rangle$ $= \langle (13) \rangle$ The orbit of x is $O(x) = \{g(x) : g \in G\}$. In this case there is only one orbit $O(1) = \{1, 2, 3, 4\} = O(2) = O(3) = O(4)$ Theorem If G permites $X = [n] = \{1, 2, ..., n\}$ then for every $x \in X$, $|Stab_{g}(x)| |O(x)| = |G|$. In our dihedred group of order 8: $|Stab_{G}(x)| = 2$ |(O(x)| = 4, |G| = 8

We have implicitly used this! eq. when calculating the symmetry group of a cube for
(G = Stab(v) O(v) shere v is a vertex
$= 6 \times 8 = 48$
(G1 = State (F) (O(F)) where F is a face
= 8 × 6 = 48
or = Stab(e) (9(e))
$= 4 \times 12 = 48$
More examples of stabilizers and orbits
G = <(1234), (13)> (13)> (2) G also geruntes the four edges a, b, c, d transitively
$y = \frac{1}{\sqrt{1-1}}, \text{Stab}_{G}(a) = \frac{1}{\sqrt{1-1}}, (12)(34) = \frac{1}{1-$
6 also permites the two diagonals d, d' IG [= [Stable] [10(0)]
$O(d) = \{d, d'\}$ $8 = 2 \times 4$ $St(t) \in C$
Stab (d) = {(), (13), (24), (13)(24)}, a Klein four-group
(G = Stab(d) O(d) inst a set of points
$8 = 2 + 4 \times 2$

G = GL3 (F) where F is a field
Gacts on F ³ , permiting vectors
The stabilizer of $e_i = \binom{1}{6}$ is $g \in G$ g $e_i = e_i $? $g \in G = g \in G$
$f_{0} = \{ o \in f \} : b, c, e, f, \} \in F, e_{j} = f_{i} \neq 0 \}$
$O(e_i) = \{all nonzero vectors\} = \mathbf{F}^3 - \{[\circ]\}$
F^3 has two orbits: $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$, $F^3 - \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$.
$Stab_{G}(0) = G$ (Permx)
Theorem IF G acts on X (i.e. G permites X i.e. G = Sym X) and x X (any point)
then $ Stab_{g}(x) \cdot (Q(x)) = G $.
Proof Let H = Stock (A) and O(x) = {X1, X2,, Xk} ≤ X. Then there exist giving gk = G
such that gi(x) = x: (by definition). * (Note: gi,, gk are not uniqually determined.)
Then G = gH L g+H L g+H L g+H LgH. (ALB denotes disjoint minon i.e. AUB with
Why? If qEG then q(x) E O(x) so (no overlap, ANB=\$)
$g(x) = x$; for some $i \in \{1, 2, \dots, k\}$ and $g_i(x) = x$; so $g_i^{-1}(g(x)) = g_i^{-1}(x_i) = x$ so $g_i^{-1}g \in H^{-1}$ Sub(x)
so $\overline{g_i}gH = H$ i.e. $g \in gH = g_iH$. Now $k = Q(x) = [G:H]$ and
In fact $g:H = \{g \in G : g(x) = x_i\}$. $ G = H [G:H] = Stab(x) (O(x)) $.

Eq. $P = 4 \frac{9}{15} \frac{5}{12} = 7 \frac{2}{10} \frac{5}{10} = 7 \frac{2}{10} \frac{5}{10} \frac$ How many automorphisms does P have? Aut P = $\{$ automorphisms of P $\} \leq S_{10}$ actually Sym $\{0, 1, 2, \dots, 9\}$ Is And $P \cong S_5$? Theorem |AutP| = 120. G = Aut P on the vertex set \$0,1,2,...,93. Proof First enumerate orbits of G = Aut P on the vertex set 10,1,2,..., 15 There is only one orbit by considering the dihedral subgroup of order 10 and 10×12=120 (05)(1847)(2639), So G is transitive on vertices $|G| = 10|G_0|$, where G = Steb(0) $G_0 = Stab (0)$

Go = Stalog(0) We show $\{1,4,5\}$ is an orbit of G. Clearly 1,4 are in the same orbit of Go Since $(14)(23)(69)(78) \in G$. Also 5 is in the same orbit as 1 (under Go) since 4 2 9 5 1 $4 = \frac{4}{75} = \frac{5}{60} = \frac{5}{$ $(15)(28)(67) \in G_{0}$ = 3 (G, 1= 3x4=12 Does $G_{o,r}$ fix 2,6 or can it interchange them? $G_{o,r} = \{g \in G : g(o) = 0 \text{ and } g^{(r)} = i\}$ $G_{o_r f_r 2} = \{g \in G : g(o) = o_r \quad g(r) = 1, \quad g(z) = 2\}$ $|G_{0,1,2}| = |Skeb_{G_{0,1,2}}(3)| |O_{G_{0,1,2}}(3)| = 2|G_{0,1,2,3}| = 2x/=2$ $5_{0} \xrightarrow{q}_{0} \xrightarrow{q}_{0} \xrightarrow{q}_{0} \xrightarrow{(37)(45)(89) \in G_{0,1/2}} (0, (3) = \begin{cases} 3, 7 \\ 0, (1, 2) \\ 0, (1, 2) \\ 0, (1, 2) \end{cases}$

() { has automorphism group G= Aut I which is Klein fourgroup (13)(46), (4) an orbit of G on the six vertices. So (G)= (G) the In the same way Proof : 1=4 Stab (1). =

In GL, (F), any two conjugate matrices have the same trace and determinant (i.e. Similar) (but not conversely in general) eg. in GL_2(F), ['o']. ['o'] are not similar (the only group element conjugate to the identity is itself). $f(AB) = f(BA) = \sum_{i=1}^{n} a_{ij}b_{ji}$ If A = MBM then AM = MB, det (AM) = det (MB) = det (M) det (B). $A - \lambda I = M(B - \lambda I)M' = MBM' - \lambda MIM' = A - \lambda I.$

Theorem Every conjugacy class in G has size (cardinality) dividi Eq. Aq has four conjugacy classes $\{()\}$, $\{(12)(34), (13)(24), (13)(24), (14), (123), (123), (134), (243)\}$.	ing [C]. (14)(23)}, {(124), (132), (143), (234)},
Proof G permites G by conjugation: if $g \in G$ and x \ddot{x} Pa in An let $x = (12)(34)$, $g = (124)$. Then	e G then g(x) = gxg ² . new operation: [muttiplication conjugation.] in G as
g(x) = (124)(12)(34)(142) = (13)(24) Atternatively: $(24)(31)$	t 10 m
The orbits of G acting on G by conjugation are definition.	just The Conjugacy classes, by
the station need of any point $R \in G$ is stating $(x) = ggg$ $g(x) = \chi$ iff $g\chi g' = \chi$ iff $g\chi = \pi g$ iff g community	$b_{5} = \left\{ \begin{array}{l} g(x) = x \end{array} \right\}.$
$[G] = [C_{G}(x)] \cdot (no. of conjugated of \pi \text{ in } G)[State_(x)] (O(x)]$	The textbook writes () (x) for the orbit of G acting on X. The been writing O(X)
Eq $C_{A_4}((12)(34)) = \langle (12)(34), (13)(24) \rangle = \{(), (12)(34), (13)\}$)(24), (HF) <u>1</u> 23) } . or

The conjugacy class of (124) in Sq is
$(O_{124}) = \{ (124), (123), (134), (142), (132), (143), (234) \} $
Strange class of (124) in Au is
$(0 \ (1024)) = \{(122), (132), (143), (234)\}$
A_{4}
$C_{g}((124)) = \langle (124) \rangle = \langle (), (124), (142) \rangle$
$\left(\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \right) = \left\langle (2 \\ 2 \\ 4 \end{pmatrix} \right\rangle$
A_q
$I_n S_q \qquad \left S_q \right = \left C_{S_q} \left((124) \right) \right \cdot \left Conjugacy class rt (124) \right $
$74 = 3 \times 8$
In A_q , $ A_q = C_{A_q}((124)) \cdot Conjugacy class of (124) $
$12 = 3 \times 4$

History of Group Theory (finite vs. infinite groups) (Another Cayley)
Historically, before we had axioms for group theory, we considered permutation groups
(subgroups of S.). This was notivated by the problem of finding roots of polynomials
Roots of $x^2 + 5x + 2 = 0$ are $\frac{-5 \pm \sqrt{17}}{2}$ where $\sqrt{17}$ is the positive root of $x^2 - 17 = 0$.
Similer forumles exist for finding roots of which ax + bx + cx + d = 0
and quartics $ax^4 + bx^2 + cx^2 + dx + e = 0$. No such formula exists for roots
of a general quintic $ax^5 + bx^7 + cx^3 + dx^2 + ex + f = 0$.
¿ Evaniste Galois
) Niels Aleel
The roots of a polynomial f(x) of augree a can be for is prable.
(using +, x, -, -, w.) if the valois group of the voots of for)
The Galois group is the good of planitations of
found wing field automorphisms.
e_{q} , $\chi^{2} + 5\chi + 2 = (\chi - \chi)(\chi - \beta)$, $\chi = \frac{-5 + \sqrt{17}}{2}$, $\beta = \frac{-5 - \sqrt{17}}{2}$
There is an antomorphism of C interchanging 2, B.
······································

Solving systems of PDE's (specifically, explicit/exact/analytic solutions rather than approximate colutions). Sophus Lie Sopleus Lie Lie groups /algebras Axioms of Group Theory came after all these examples. Emmy Noether In 4W3 # 3, $G=GL(IF_5)$ is permeting the 25 vectors of $IF_5^2 = \{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in IF_5 \}$. $O = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is the zero vector. If $v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ then $G_{v} = \left\{ \begin{bmatrix} a & 0 \\ c & 1 \end{bmatrix} : a_{i} C \in H_{5} \quad \text{crith} \quad a \neq 0 \right\}$ (Similar to #3(c).) where 0 = (°). $|G_{v}| = 20$. |G| = 480. (do this in (a)). $(\mathcal{O}_{G}(v)) = 24$. If $w = \begin{pmatrix} b \\ d \end{pmatrix}$ is any nonzero vector in \mathbb{F}_{5}^{2} then there exists $u \in \mathbb{F}_{5}^{2}$ which is not a scalar multiple of w (there are 20 possible choices for $u=[\frac{a}{2}]$. So u, wform a basis for H_{5}^{2} . Then $A=[u|w]=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible and $Av=w=\begin{pmatrix} b \\ d \end{pmatrix}$. $|G| = |G_v| |O(v)| = 20 \times 24 = 480$ what is a soluble group?

A subgroup K < G is normal if gK = Kg for every g G. (K < G) (Equivalently, K is the hernel of a group homomorphism i.e. there exists a
group homonio parsing q .
The only normal enlightings of S_3 are $\langle (1) \rangle$, $\langle (123) \rangle = A_3$, S_3 .
$\langle (12) \rangle, \langle (13) \rangle, \langle (23) \rangle$ are not normal. $\langle (12) \rangle, (13) \neq (13) \langle (12) \rangle$ $\langle (123) \rangle, (13) = (13) \langle (123) \rangle = \{ (12), (13), (23) \}$.
Sz decomposed as $\langle () \rangle \triangleleft \langle (123) \rangle \triangleleft S_3 (a Composition series for S_3)$
1 3 6 So has a composition services imply HAG.
$ \langle (1) \rangle \triangleleft \langle (12)(34) \rangle \triangleleft \langle (12)(3$
1 2 (4 12 24

Sz has composition services (S5/A5 = 2 $\langle 0 \rangle < 4 + 4 + 5 = 5$ A=/20> = 60 As has only two normal subgroups : 2()>, As IF G is any group then G has a composition series $1 \triangleleft G, \triangleleft G_2 \triangleleft \cdots \triangleleft G_k = G$ where G_i/G_i is a simple group i.e. we cannot find any normal subg between Girs and G. The simple groups are: the cyclic groups of prime order. These are be only abelian simple groups.
 the nonabelian simple groups. Classification of the finite simple groups ((FSG) was the main goal of group theory prior to the 1980's. This is the biggest proof in the history of mathematics.

Roughly, the finite simple groups are A. n > 5 (important: plynomials of logree n>5 Cannot be explicitly solved in general) certain matrix groups over finite fields 26 exceptional simple groups, up to and including the Monster M, IMI = 808,017,424, 794, 572,875, 886,459,904,961,710, 757,005,754, 368,000,000,000 Officially our exam is 8-10 an Fri Dec 15 here (BU 209). Optional afternoon time: 1:15-3:15 pm BK 209 3:30-5:30pm CASM If a room is taken, lock for a note on the dear-6 decomposes into a composition series If G is any finite group then where Gin & Gin with no normal subgroups between Gin and Gin $1 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_k = G$ These are guotient groups bi/fino nontrivial normal subgroup). and these are simple groups (no nontrivial normal subgroup). These quotient groups are the composition factors of G. G is solvable if all its composition factors are cyclic of prime order.

Abelian groups are solvable. S_ is nonsolvable for n≥5 eq. 1 d A5 d S5 S_n is solvable for $n \leq 4$ Simple groups are important building blocks of all finite groups. As Just like prime numbers are building blocks of integers. cyclic of order z The first major result (before CFSG): Walter John Theorem (Feit, Thompson) Every group of odd order is solvable. John G. Thompson

Homomorphisms Automorphisms
A group homomorphism is a map of: G -> ff such that $p(xy) = \phi(x)\phi(y)$ for all xy EG
IF \$: 6->6 is a homomorphism and it is bijective then it is an isomorphism, hence an antomorphism.
Eq. If we fix $g \in G$ then conjugation by g gives an automorphism $\mathcal{P}(x) = g \times \tilde{g}'$ of G . ($x \in G$)
$z_{g}(x_{g}) = g(x_{g})g' = (gxg')(gyg') = z_{g}(\pi)z_{g}(y).$ (so z_{g}' is a homomorphism).
$2f_{a'}$ is the inverse function of γ_{g} since $\gamma_{g'}(\gamma_{g}(x)) = \overline{g'}(qx\overline{g'})(\overline{g'})' = x$
and similarly $2_{g}(2_{g-1}(x)) = x$. So $\overline{2_{g'}} = (\overline{2_{g}})'$ so $\overline{2_{g}}$ is bijective.
If f is abelian then 6 can have many action or phisms but only one of them has the above form since $\gamma_{g}(x) = g\pi g^{2} = gg^{2}x = \pi$.
Definition An automorphism of G of the form $Z'_{G}(x) = g x g''$ is called an inner
automorphism. If G is dealian then the only inall automorphism of G is the identify Iron.
Eq. If G is a Klein four-group, $G = \langle a, b \rangle = \{1, a, b, c\}$, $c=ab$, $a=b=c=i$ 1 a b c then G has four automorphisms permuting a, b, c in all $3! = b$ possible a a a c b c in all $3! = b$ possible a a a c b c in all $3! = b$ possible a a a b c c in all $3! = b$ possible a a a b c c in all $3! = b$ possible a a a b c c in all $3! = b$ possible

Eq. consider S_n which is about as nonabelian as possible. For $n \neq 2,6$, S_n has n! antomorphisms, and they are all inner. S, has exactly 6 automorphisms permuting the three involutions in all 31=6 possible ways. $\begin{array}{l} \ell g \, , \, \phi \, : \, S_{3} \, \rightarrow \, S_{3} \, , \, \phi \left(\left(12 \right) \right) \, = \, \left(12 \right) \, , \, \phi \left(\left(13 \right) \right) \, = \, \left(23 \right) \, , \, \phi \left(\left(23 \right) \right) \, = \, \left(13 \right) \, . \\ \hline This defines an automorphism of S_{3} \, , \, namely \, \phi \, = \, 2 \, , \\ S_{0} \, \phi \left(\, \left(123 \right) \right) \, = \, \left(\, 1 \, (123) \right) \, = \, \left(\, 213 \right) \, = \, \left(132 \right) \, . \end{array}$ $S_2 = \langle (r_2) \rangle$ is abelian. The only automorphism of S_2 is the identify $\phi((1)) = (1)$ $\phi = 2f_{(1)} = 2f_{(1)}$ Every automorphism of Sz is inner but there is only one automorphism, not $|S_6| = 6! = 720$. S_6 has 1940 automorphisms, helf of which are inter (they come from $\{r_g : g \in S_6 \}$) Look at Test. We gave an automorphism of of S_6 that maps a 3-yele to another dement not a 3-yele.