

Transpositions (ij) are old permutations.
(123456789) = (19)(18)(17)(16)(15)(14)(13)(12)
A k-cycle is a product of k-1 transpositions. If h = are this is add and vice versa.
A k-cycle is a product of k-1 transpositions. If k is even, this is odd; and vice versa. A cycle of odd begth is an even permitation;
even i ald
If a is a product of an even number of transpositions, then a is an even permitation.
the second s
Permitations in S_5 : Even () () () () () () () () () () () () () (
(ijk) 20 (ijk) (lm) 20 $A_5 = \frac{1}{2}$ even permutations
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
x y (x 2) x - 2 orientation-preserving transformation.
(xyz) poorts (An odd permitation of the coordinate axis in R is
an orientation-reversing transformation.
g/z IF T: R" > R" is a linear transformation then
det T { = 0 if T is not invertible det T { >0 preserves orientation

A permitation $x \in S_n$ can be expressed as a product of transpositions. If x is a product of an even number of transpositions, then x is even.
If a is a product of an even humber of the for and
$\frac{1}{(13)(12)(13)(23)(23)(23)(23)(23)(23)} = (123) = (123) \frac{1}{23} \frac{1}{(123)(12)(13)(23)(23)(23)(23)(23)(23)(23)(23)(23)(2$
$S_3 \cong \langle [0 1], [0 1] \rangle \cong dikadral group of order 6an equilatoral triangle) \frac{1}{2} \frac{1}{2}$
Groups of the 2
$S_2 \cong \{0, 1\} \mod 2 \cong \langle -1 \rangle$ under multiplication $5 \qquad 1 \qquad 5 \qquad 1 \qquad 1$
$\begin{array}{c} \circ 1(1) (12) \\ (12) \\ (1) (12) \\ (12) \\ (1) \\ (12) \\$
(12) (12) () 1 1 0 -11-1 (12) (12) () has an abelian symmetry poup of order 4 which is not ayclic (ayley tables of groups of order 2 (the Klein four-group)
Contables of groups of order 2
Cayley tables of groups of order 2 (the Klein four-group) all "look the same"
Theorem Any two groups of prime orderfære isonorquic; they are cyclic of order p.
Theorem Any two groups of prime orderfære isomorphic; they are cyclic of order p.

Eq. $\mathbb{Z}_{15\mathbb{Z}} = \{0, 1, 2\}$ (under addition mod 3) is isomorphic to $A_3 = \langle (123) \rangle = \{(), (123), (132)\}$ $\downarrow 0 = 12$ $\circ \downarrow () (123) (132)$ and $\{1, w, w\}$ under multiplication, $\omega = \frac{1}{14}$ • () (123) (132) () () (123) (132) = e^{211/3} (123) (123) (132) (1)(132) (132) () (123)1 1 W W2 w w w We say two groups 6, H are isomorphic $(G \cong H)$ if there exists a bijection $\phi: G \longrightarrow H$ such that $\phi(x_0) = \phi(x)\phi(y)$ G = H operation $\phi: G \longrightarrow H$ such that $\phi(x_0) = \phi(x)\phi(y)$ G = H operation $f = f(x)\phi(y)$ in G in H\$(xy) \$(xy) morphism of: Zy -> Az is a bijection satisfying $\phi(x+y) = \phi(x) \circ \phi(y)$ An isomorphism $\phi: \mathbb{R} \longrightarrow (0, \infty)$, $\phi(x+y) = \phi(x)\phi(y)$ is defined by $\phi(x) = e^x$ under under $e^{x+y} = e^{x} \cdot e^{y}$. addition multiplication $(subgroup of R = (-\infty, 0) \cup (0, \infty))$ $\mathbb{R} \not\cong \mathbb{R}^{2}$ $l_n = \phi': (o, \infty) \longrightarrow \mathbb{R}$ since R (reels under addition) has only one element of finite order whereas R* has two elements of finite order: ±1.

is isomorphic to a b c a $\phi(0) = c + \frac{1}{c} + \frac{1$ $\varphi(0) = c \quad \frac{x}{c} \quad \frac{c}{b} \quad \frac{b}{b} \quad a$ 2/37 (trivial group ?13) Every group of order 1 is isomorphic to · 2/22 + 0 1 be then multiply both sides by \vec{c} on the right to get $(ac)\vec{c}' = (bc)\vec{c}'$ $a(c\vec{c}') = b(c\vec{c}')$ e e a b Every group of order 3 a = b a a b e is cyclic (isomorphic to \$\frac{2}{32}\$ under addition).

e a b c e a b c a a e c b b b c e a c c b a e Two cases: either all demants of G have order Theorem: There are exactly two groups of order -Re cyclic group of order 4.	2, or 6 has an element not of order 2. . I up to "someorphism: the Klein Sour-group and
$\frac{e}{a} \stackrel{e}{a} \stackrel{b}{b} \stackrel{c}{c} \stackrel{d}{d} \stackrel{e}{e} \stackrel{e}{a} \stackrel{b}{b} \stackrel{c}{c} \stackrel{d}{d} \stackrel{e}{e} \stackrel{e}{e} \stackrel{e}{e} \stackrel{e}{e} \stackrel{a}{e} \stackrel{a}$	e e a b c d e e a b c d a a e e d b b b c d a e c c d e b a d d b a e c for b (cb=e) but not a right inverse for b c (its (ayley table is a lotin c is a beft inverse for b (cb=e) but not a right inverse for b c (its (ayley table is a lotin a right inverse for b c (b=e) but not a right inverse for b c (b=e) but not c (b=e) b c (b=e) but not c (b=e) b c (b=e) b c (b=e) but not c (b=e) b c (b=
Proof (Note: $x^2 = e = identity$ for every $x \in G$.) Let $x, g \in G$. Then $(x \cdot y)^2 = x \cdot y \cdot x \cdot y = e$ so $yx = x(x \cdot y \cdot x \cdot y) = x \cdot y = x \cdot y$. $x^2 = e$ $y^2 = e$	eg. (caja = $aa = c$ c(ad) = cb = e

S	voe	_ Se	ock	-70	eore.		•						• •		· ·	. 1-	1	~		• •	•	••••	•	• •	• •	· ·	••••	•	• •		
In		wer.	y j	groc th is	ep G		for	~ x,	y€	G 4	ve i	ha	~~ ()	.(7	ry)	а 1	уx				•						••••	•	• •	• •	
Pre	of) (y x	')(;	ry)	C	y.	1 y	2	1	a	ind		(rg)(ý'x	~')	۔ ج	1.	• •	•		•	• •	• •	• •	••••	•	• •	• •	• •
Warn	ing	•	(x	y 5'	Ф Я	7 -1 Y	1	ς α (gene	Sha D					• •		• •	• •		•••	•	•••	•	•••	• •		•••	•	12	3	• • •
	e	C C C		<u> </u>	Klei	 	•			ŝ	rite	th	r. ro	w5 8	יר אך ו ער ער	the	Ca	yle	-y	tale	Ce Ce	aa S	pe	ini	tati	ès No	A	e	12 "" ", a, b wr g	, C .	
e a b	e a b	e c	e c e	6 a	Klei fou	r-gr0	mp		• •	، کخ در د	(), . 	()	(2) 6	[3:4) !s		(3 Sul)(2· igre	4), mp	of	S _q	2 5 . •		, t	5 4	• • •				J		Р
		• •	1	• •		• •		• •	• •																						• •
e	e	a . a	6	C C	Cy	clic orde	gre	pry	••••		G	rive	25	{:(`), i . , i	(125 ,	39)) () , , ,	(3)	(24)" 	• ([4 • • • • • •	F 32	23	or Of	s i	2 1 	<i>Sur</i> (grou	P :	• •
a b c	а 6 с	۵	e e	e e b				• •	• •	The Eu	oren	. ((Ca	ylen		Sepi	080 (~ 5	uta	tion	· · ·	the li	ove.	~~) to	a s	zubg	n o n	- - - P	e of	n n Sa	• •	• •
	•	• •	• •	• •	• •	••••	•	• •	• •	EJ	lere	*	4:~ 1 =	161	gr.	onp	. 0 (s	••••	(>0¥		pc	 		• •) . 	· ·	•	• •	• •	• •
																					•										
																														• •	
		• •	• •	• •	• •		•	• •	• •		• •	•	• •		• •		• •	• •		• •		• •		• •	• •		• •	٠		• •	• •
																				• •											