

A matrix in GL2(IR) is conjugate to [0-1] IR it has trace 0 and determinant -1.
If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2(\mathbb{R})$ then A has characteristic polynomial $f(x) = det(xI-A) = det(\begin{bmatrix} x & o \\ o & x \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix})$
$= \begin{vmatrix} x-a & -b \\ -c & x-d \end{vmatrix} = (x-a)(x-d) - bc = x^{2} - (a+d)x + (ad-bc)$ $+A det A Some books define the characteristic polynomial Cayley Hamilton Theorem (look it up in any linear algebra book) of A as det(A - xI) = (-i)^{n} det(xI - A)If f(x) is the characteristic polynomial of an nxn matrix A, then f(A) = 0.$
In the 2×2 case, $A^2 - (4rA)A + (dotA)I = 0$ holds as we compute here: $A^2 = \begin{bmatrix} a & 6 \\ c & d \end{bmatrix} \begin{bmatrix} a & b_1 \\ c & d \end{bmatrix} = \begin{bmatrix} a^2+bc & ab+bd \\ ac+cd & bc+d^2 \end{bmatrix}$ $A^2 - (4rA)A + (dotA)I = \begin{bmatrix} a^2+bc & ab+bd \\ ac+cd & bc+d^2 \end{bmatrix} - (a+d)\begin{bmatrix} a & b_1 \\ c & d \end{bmatrix} + (ad-bc)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a^2+bc - (a+d)bc + d^2 \\ ac+cd - (a+d)c & bc+d^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
If $A \in GL_2(\mathbb{R})$ has trace 0 and determinant -1 then it satisfies $A^2 - 0A - 1I = 0$ so $A^2 = I$ so in the group $GL_2(\mathbb{R})$, A has order too 2. (tr $I = 2$, not 0) f(x) = det(xI - A) may or may not be the smallest degree polynomial that has A as a root. The minimal polynomial of A, $m(x)$, is the monic polynomial of smallest degree satisfying $m(A) = 0$. Facts (see a linear algebra book):
Roots of $f(x)$ are eigenvalues of A. m(x) divides $f(x)$ i.e. $f(x) = h(x) m(x)$ for some monic polynomial $h(x)$ (often $h(x) = 1$, $m(x) = f(x)$). Every eigenvalue of A is a root of $m(x)$.

Theorem let A & GL_ (R). Then the following are equivalent:
(i) + A = 0, dat A = -1
(ii) A has order 2 but $A^{+} - \bot$
(iii) A is conjugate to [0-1] Je have proved (i) => (ii). And (iii) => (i) is easy. Assume A = M[0-1] M ⁻¹ for some MEGL(IR)
Then + A = tr(M[0,]M) = tr(MM[0,]) = tr[0,] = 0.
tr AB = tr BA if A is man, B is now (short proof: see linear algebra. Both equal to << 2 "ij bi
det $A = det M det \begin{bmatrix} 0 & 0 \\ 0 & - \end{bmatrix} det M = -1$
MM' = I
$det(m)det(m^{-1}) = det I = I$
We at a most of x-1 = (x+1)(x-1) when the a root of x-1 = (x+1)(x-1)
So the minimal poly. of A divides $x^2 1$: $m(x) = x^2 1$ or $x+1$ or $x+1$ or 1.
If $m(r) = 1$ then $m(A) = I = 0$. No!. No! I has order 1, not order 2)
If $m(x) = x_{-1}$ then $m(A) = A - I = 0$ then $n = 1$ (No! for assumption)
If $m(x) = x+1$ then $m(A) = A + 1 = 0$ so $f(x) = x^2 - 1$ = $7 + A = 0$, det $A = -1$, $= >$ (i) holds
So ±1 are eigenvalues of A. Let u, v be eigenvectors corresponding to 1,-1 is. Au=u, Av=-v.
Let M = [u v] (2x2 metrix having u, v as columne)
$AM = \left[Au \middle Av \right] = \left[u \middle v\right] = \left[u \middle v\right] \left[o - 1\right] = M\left[o - 1\right] \implies A = M\left[o - 1\right] M^{T} i.e. (iii) holds.$
······································

		the	re		25R	.H	MD	C o	MA	qac	y	c	las	se	5	R	d	bm	ent	Ь	, P	1	ord	ler	2		in	6:6	θĻ((IR)) :															
	•					ξ.	-'T	= 1	ل ر م	י ר זר	Q		•	In	a	da	55	by	· a	sef	4	· s	inc	٤.	-]	: e	Z	(G)		•		• •			•				•	• •	• •		•	• •	
					•	ڊ •^	,s d		,0 -1 ·	- <u>-</u>			. f			50	0	- บ า -				M			nice:	د د	W	ith		tre	102	0	a	nd	de	tern	nira	ut	-1	•			•	•	• •	
						A	4	ma	אוריק.	'>	(99	J.	gau	2	10	lo	' -I	1	. '	.e.	•		. '																							
						. `	Thi	ς.	ia	ch	do	- 2	. [i d ò -	1		4	€l	2																											
																. '.																														
															•																															
																																	• •							•	• •					
•	•							• •					•	•	•						•	•	•							• •			• •			•	• •			•	• •			•	• •	
•	•	• •		• •				• •				•		•	•	• •						•	•	• •					•	• •			• •			•	• •			•	•		•		• •	
				• •				• •		•			•	•	•						•		•							• •			• •		•	•	• •			•	• •			•	• •	
•	•	• •		• •	•		•	• •			•	•	•	•	•	• •				•	•	•	•	• •	•		•			• •			•	•	•	•	• •		•	•	•				• •	
•	•	• •		• •	•		•	• •				•		•	•	• •						•	•	• •	•				•	• •			• •			•	• •			•	•		•		• •	
		• •		• •									•	•	•								•				•	•		• •			• •		•					•	• •					
	•	• •					•	• •			•			•	•	• •				•	•		•	• •	•					• •			• •			•	• •		•	•					• •	
		• •			•						•	•			•	• •									•				•	• •			• •	•		•	• •		•							
															•																															
																														• •			• •							•	• •				• •	
•	•	• •			•			• •					•	•	•	• •				•	•	•	•							• •			• •			•	• •		•	•	• •				• •	
•	•	• •		• •				• •				•			•	• •						•	•	• •					•	• •			• •			•	• •			•	• •		•		• •	
				• •				• •		•			•	•	•						•		•							• •			• •		•	•	• •			•	• •			•	• •	
•	•	•		• •				• •				•	•	•	•	• •	•			•	•	•	•	• •			•		•	• •			•		•	•	• •				• •				•	
•	•	• •		• •	•		•	• •			•		•	•	•	•			•	•	•	•	•	• •	•				•	• •			•			•	• •			*	•				•	
•	•			• •				• •				•		•	•	• •				•	•	•	•	• •			•		•	• •			• •			•	• •				• •				• •	
	•	•		• •			•	• •						•	•	• •					•		•	• •						• •			•			•	• •				•				• •	
		• •		• •				• •								• •								• •									• •				• •									