

A matrix in GL2(IR) is conjugate to [0-1] TR it has trace 0 and determinant -1.
If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{G}_{L_2}(\mathbb{R})$ then A has characteristic polynomial $f(x) = det(xI-A) = det(\begin{bmatrix} x & o \\ o & x \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix})$
$= \begin{vmatrix} x-a & -b \\ -c & x-d \end{vmatrix} = (x-a)(x-d) - bc = x^2 - (a+d)x + (ad-bc)$ $+ A det A Some books define the characteristic polynomial Cayley Hamilton Theorem (look it up in any linear algebra book) of A as det(A - xI) = (-i)^n det(xI - A)If f(x) is the characteristic polynomial of an nxn matrix A, then f(A) = 0.$
In the 2x2 case, $A^2 - (4rA)A + (dotA)I = 0$ holds as we compute here: $A^2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ ac+cd & bc+d^2 \end{bmatrix}$ $A^2 - (4rA)A + (dotA)I = \begin{bmatrix} a^2+bc & ab+bd \\ ac+cd & bc+d^2 \end{bmatrix} - (a+d)\begin{bmatrix} a & b \\ c & d \end{bmatrix} + (ad-bc)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a+bc-(a+d)a+(ad-bc) & ab+bd \\ ac+cd - (a+d)c & bc+d^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
If $A \in GL_2(\mathbb{R})$ has trace 0 and determinant -1 then it satisfies $A^2 - 0A - 1I = 0$ so $A^2 = I$ so in the group $GL_2(\mathbb{R})$, A has order too 2. (tr $I = 2$, not 0) f(x) = det(xI - A) may or may not be the smallest degree polynomial that has A as a root. The minimal polynomial of A, $m(x)$, is the monic polynomial of smallest degree satisfying $m(A) = 0$. Facts (see a linear algebra book):
Facts (see a linear algebra book): Roots of $f(x)$ are eigenvalues of A . m(x) divides $f(x)$ i.e. $f(x) = h(x)m(x)$ for some monic polynomial $h(x)$ (often $h(x)=1$, $m(x)=f(x)$). Every eigenvalue of A is a root of $m(x)$.

Theorem let A & GL_2 (R). Then the following are equivalent:
cir + A = 0, det A = -1
(ii) A has order 2 but A = -I.
(iii) A is conjugate to $\begin{bmatrix} 0 & -1 \end{bmatrix}$ Ve have proved (i) \Rightarrow (ii). And (iii) \Rightarrow (i) is easy. Assume $A = M\begin{bmatrix} 0 & -1 \end{bmatrix} M^{-1}$ for some $M \in GL_{(R)}$
Then $+A = +(M[_{1}]^{n}) = +(MM[_{0}]) = + [_{0}]^{n} = 0$.
tr AB = tr BA if A is nown, B is nown (short proof : see linear algebra. Both equal to $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji}$)
$det A = det M det \begin{bmatrix} 0 \\ 0 \end{bmatrix} det M = -1.$
MM' = I (dot M)'
$det (M)det (M^{-'}) = det I = I$
When the there are a the providence of the prov
We must prove (ii) => (iii) If A has order 2 then $A^2 = J$, $A \neq J$. A is a root of $x^{-1} = (x+i)(x-i)$ So the minimal poly. of A divides $x^2 - i$: $m(x) = x^2 - i$ or $x+i$ or $x - i$.
If $m(x) = 1$ then $m(A) = I = 0$. No!. If $m(x) = x_{-1}$ then $m(A) = A - I = 0$ then $A = I$ (No! I has order 1, not order 2) If $m(x) = x_{-1}$ then $m(A) = A - I = 0$ then $A = I$ (Ab! for assumption)
If $m(x) = x_{-1}$ then $m(A) = A - I = 0$ then $A = 1$ (ab) for assumption)
If $m(x) = x+1$ then $m(A) = A + I = 0$ so $A = -I$ (No! by assumption). If $m(x) = x+1$ then $m(A) = A + I = 0$ so $A = -I$ (No! by assumption). So $m(x) = x^2 - 1$ divides $f(x)$, so $f(x) = x^2 - 1$ = 7 + $A = 0$, det $A = -1$. => (i) holds So $m(x) = x^2 - 1$ divides $f(x)$, so $f(x) = x^2 - 1$ = 7 + $A = 0$, det $A = -1$. => (i) holds
So $m(x) = \pi - 1$ with us sur, we have eigenvectors corresponding to 1,-1 i.e. $Au = u$, $Av = -v$. So ± 1 are eigenvalues of A. Let u, v be eigenvectors corresponding to 1,-1 i.e. $Au = u$, $Av = -v$. Let $M = [u v]$ (2x2 matrix having u, v as columne)
Let M = [u v] (2x2 matrix having 4, v es columne)
$AM = \begin{bmatrix} Au \\ Av \end{bmatrix} = \begin{bmatrix} u \\ -v \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = M \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \implies A = M \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} M^{T} i.e. (iii) holds.$

There are two conjugacy classes of doments of order 2 in 6=GL(R):
$3 - T = [-1, 0, 7]$ is in a class by itself since $T \subset Z(G)$
• All matrices conjugate to [0] i.e. all matrices with trace O and determinant -1.
$\frac{1}{2} = \frac{1}{2} = \frac{1}$
This includes [1], a < R
Consider the dihedral group G of order 8 (the symmetry group of a squere) so (GI = 8. Let's pick generators x, y for G where x is an exempt of order 4 and y is a reflection (order 2).
$G = \{ x_1, x_2, x_3, y_1, x_2, x_3, x_3, x_4, y_1, x_2, x_3, y_1, y_2, y_1, y_2, y_3, y_4, y_1, y_2, y_3, y_4, y_1, y_2, y_3, y_4, y_1, y_2, y_3, y_4, y_4, y_4, y_4, y_4, y_4, y_4, y_4$
$x^{i}x^{j} = x^{ij}$ $x^{i}x^{j} = x^{ij}$ $x^{i}x^{j} = x^{ij}$ $x^{i}y \cdot x^{j} = x^{ij}y$ $x^{i}y \cdot x^{j} = x^{ij}y$ $x^{i}y \cdot x^{j} = x^{ij}y$ $x^{i}y \cdot x^{j} = x^{ij}y$ $x^{i}y \cdot x^{j} = x^{ij}$ $x^{i}y \cdot x^{j} = x^{ij}y$ $x^{i}y \cdot x^{j} = x^{ij}y$
$x \cdot xy = x \cdot y$) $x \cdot y = x \cdot y$
$xy \cdot x' = x \cdot y$
Presentation for G: G = $\langle x, y \rangle$: $x^{4} = y^{2} = 1$, $yx = x^{2}y$ generators relations $yx^{2} = x^{2}y = x^{2}y$ $yx^{2} = x^{2}y = x^{2}y$
generators relations
g (g) the rule
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} x & 4 & \langle x \rangle & \langle x \rangle = 4 \\ x^{3} & 4 & \langle x \rangle & \langle x \rangle = 4 \end{array} \qquad \begin{pmatrix} \zeta & \zeta \\ \zeta & \zeta \\$
$\begin{cases} x^2 & 2 & G, \\ (G = 8) \end{cases}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{cases} x^{2}y - 2 < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > < x^{2}, xy > $
$\begin{cases} x_{y} & z & \langle x_{1}^{*}, x_{y} \rangle = \{x_{1}^{*}, x_{y} \rangle = \{x_{1}^{*}, x_{y} \rangle = \{x_{1}^{*}, x_{y}^{*}, x_{y}^{*} \rangle = \{x_{1}^{*}, x_{1}^{*}, x_{1}^{*}, x_{2}^{*}, x_{2}^{*}, x_{3}^{*}, $
$-\frac{1}{2} = \frac{1}{2} = 1$

Cosets and Cagrange's Theorem
If H is a subgroup of G (nultiplicative, at least generically) then a coset of H in G is a subset of the form $gH = \{gh : h \in H\}$. Note: $gH \subseteq G$, not a subgroup in general.
subset of the for all = 2 ah : he H ?. Note: gH G , not a subgroup in general.
$H_{13}H_{1$
$\begin{array}{cccc} H_{2} & (12) & (12) \\ \hline (1) & (12) \\ \hline (12) & (12) \\$
$ (13) H = (13) \{(1, (12))\} = \{(13), (123)\} $ $ (12) H = (23) \{(1, (12))\} = \{(23), (132)\} $ $ (12) (132) (132) (132) \{(132)\} $
$(1 \ge 3) H = (1 \ge 3) \{(1), (1 \ge)\} = \{(1 \ge 3), (1 3)\}^{-1}$ (1) (13) (13)
$(123)H = (123) \{(1), (12)\} = \{(125), (13)\}^{2} $ $(1) (13) (123) (123) = \{(122), (12)\}^{2} = \{(132), (23)\}^{2} $ $(1) (13) (123) = \{(132), (12)\}^{2} = \{(132), (23)\}^{2} $ $(1) (13) (123) = \{(132), (12)\}^{2} = \{(132), (23)\}^{2} $ $(1) (13) (123) = \{(132), (12)\}^{2} = \{(132), (23)\}^{2} $ $(1) (13) (123) = \{(132), (12)\}^{2} = \{(132), (23)\}^{2} $ $(1) (13) (123) = \{(132), (12)\}^{2} = \{(132), (23)\}^{2} $ $(1) (13) (123) = \{(132), (12)\}^{2} = \{(132), (23)\}^{2} $ $(1) (13) (123) = \{(132), (23)\}^{2} $ $(1) (13) (12) = \{(132), (23)\}^{2} $ $(1) (13) (12) = \{(132), (23)\}^{2} $ $(1) (13) (12) = \{(132), (23)\}^{2} $ $(1) (13) (12) = \{(132), (23)\}^{2} $ $(1) (13) (12) = \{(132), (23)\}^{2} $ $(1) (13) (12) = \{(132), (23)\}^{2} $ $(1) (13) (12) = \{(132), (23)\}^{2} $ $(1) (13) (12) = \{(132), (23)\}^{2} $ $(1) (13) (12) = \{(132), (23)\}^{2} $ $(1) (13) (12) = \{(132), (23)\}^{2} $ $(1) (13) (12) = \{(132), (23)\}^{2} $ $(1) (13) (12) = \{(132), (23)\}^{2} $
(132) H = (132) {(1), (12)} = {(132), (23)} (Recall: A partition of G is a collection of subsets that covers all of G without any overlap.) Theorem The assets of a subgroup H ≤ G partition the elements of G. Theorem The assets of a subgroup H ≤ G partition the elements of G. Theorem The assets of a subgroup H ≤ G partition the elements of G. Theorem The assets of a subgroup H ≤ G partition the elements of G. Theorem The assets of a subgroup H ≤ G partition the elements of G. Theorem The assets of a subgroup H ≤ G partition the elements of G. Theorem The asset on the performance of G. Theorem The asset of G. Theorem Theorem Theorem The asset of G. Theorem Theo
The next of a culture HSG pertition the dements of G
Theorem the cosets att and bit overlap of (since e = H). Suppose two cosets att and bit overlap
is ge att obt so g= ah. = bh_ for some h, hz EH, so att = gh, tt = gH) IF hEH then
i.e. $g \in aH(16H) \Rightarrow g^{-4H} = gh_{2}^{-1}$ and $b = gh_{2}^{-1}$ and $bH = gh_{2}^{-1}H = gf(1 - h_{2} - h_{2})$
f(a - gh) = f(a
$\frac{1}{1600} \frac{1}{1600} = \frac{1}{160} \frac{1}{100} = \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$
Proof A bijection H -> gtt is given by h -> gh. An inverse map gH -> H
is given by x >> gx.
As a corollary, we obtain lagrange's lhearen: (G) = (no. of cosets of H in o) ~ (see or each coset)
the index of H in G [H]
e. [G] = [G:H][H] (denoted [G:H])

Eq. In Sa. the set of all even permitations is a subgroup An. The set of all odd permitations is a coset of A.	(n≥2)
So has two cosets of A_n : () $A_n = A_n = \frac{1}{2}$ even per mutations? (12) $A_n = \frac{1}{2}$ add permutations?	· · · · · · · · · · · · · · · · · · ·
$ S_n = n! = [S_n : A] (A_n)$	
T the addition around of R ³ , a line through the onigin is a subgro	της
Eq. In the additive group of R ³ , a line through the origin is a subgro A coset of this line lis a line parallel to the original line. The parallel lines to I give a profition of R ³ .	
Eq. $G = S_n$ is partitioned into cosets of $H = G_1 \cong S_{n-1} = \begin{cases} permutions of 2, 3,, n \\ G = \sigma_1 H \cup \sigma_2 H \cup \sigma_3 H \cup \cdots \cup \sigma_n H \\ \end{cases}$ where $\sigma_k \in G$ is any permutation mapp	while firing 13
eq $\sigma_{i} = ()$, $\sigma_{z} = (12)$, $\sigma_{z} = (13)$,, $\sigma_{n} = (1n)$ $\sigma_{k} H = Sall \sigma \in G : \sigma(i) = k $	· J · · · · · · · · · · · · · · · · · ·
Proof If $\sigma \in G$, $\sigma(i) = k$ then $\sigma' \sigma_k(i) = \sigma'(k) = i$ so $\sigma' \sigma_k \in H = G_i$ so	$\sigma'\sigma_k H = H so \sigma_k H = \sigma H$.
H = (n-i)!, $[G:H] = n$, $ G = H [G:H]n! = (n-i)! * n$	

Left cosets vs. Right cosets of HSG	Eg. G= S3	, H=Sz=Gz
Left cosets $gH = \{gh : h \in H\}$, $g \in G$.		
Right cosets Hg = {hg : h€ H }	Left cosets	(12) (132) (23)
[G:H] = index of H in G = complex of left possets of H in G	Right cosets	() (13) (123)
= unmber of right cosets of H in G	G = {	$\sigma \in G : \sigma(k) = k$
All cosets of H in G have size [gH] = [H] = [H].	\$	abilizer of G
If G is abelian, then $gH = Hg$. We say $H \leq G$ is normal if $gH = Hg$ for all $g \in G$ (left and right cossets are the same). Eg. $G = S_4$, $K = \langle (12)(34), (13)(24) \rangle = \{(1, (12)(34), (13)(24), (14)(23)\}$ is a Klein four-subgroup of G.	$H(rz) = \{(), \\ H(rz) = \{(), \\ H(zz) = \{(), \\ H(rzz) = \{(), \\$	
Theorem K≤G. <u>Proof</u> IF g∈G and k∈K then gkg'∈K so gKg'⊆K. (gKg'= so gKg'g'⊆ Kg ie. gK⊆Kg. Similarly, gK ≥ Kg to gkg'g'⊆ Kg ie. gK⊆ Kg. Similarly, gK ≥ Kg	so gu - ng.	.
In general if $H \leq G$ then $gH\bar{g}'$ is a subgroup of G , called a <u>Proof</u> Given hi, hz \in H so $gh, \bar{g}', ghz\bar{g}' \in gH\bar{g}'$, we have $(gh, \bar{g}')(ghz\bar{g}')$ so $e \in H$ and $geg' = e \in gH\bar{g}'$. Also if $h \in H$, so $ghg' \in gH\bar{g}'$.	= $g h h g \in g H g$ then $(g h g')' =$	Take $e \in G$ as the identity, $gh'g' \in gHg'$.

•	Gon	nji	ıgā	te	Su	bgr	oup	5 -	an	e al	150	m	0	phi	Ċ	fo l	ea	ch	oll	er.		Gĩ	Ven	9	e 6	/	H≤	έG,	. a	m. 1	ison	w n	bišn	n.	H.		7	z ffg		ß			
		<i>five</i>	2~		y	•	. h . 	F-	?	gı	٢IJ	ţ	•		• •		•		•	•		•	• •	•	•	• •		•	• •	•			• •	•	• •					 0 [.]	· ·		
	A	Şu	dog	non	up.	įΗ	4	G	i	ÌS	ho	r n	al) 	(H≼	Ĵ G	.)	íff	2 ·	en	en (1 0	mja	'ga'	te e	f :	ff.	is is	Н	its	eff	is is	e	9	Hg	.=	• H •	fi	x	all	geG	
																																							•			•	
	Ex	ar	npl	L	•	Ģ	÷ S	4	1	ł	1=	G			(),	(2	3)	, (2	7),	(34	Ð,	(2	34)	, (*	243)}	•	211	S3	. 1	í L]=	(12	4)	Ψ (7.	•		•				
	 . 9	Hi	ן ן		Gz	2		()		((3)		(14	ŧ),		(२4	5	(1	34)	, . , .	(1 4	3)) <u>ξ</u>	2	S ₃	• •	•	•	• •	•	• •	g	(1 2 = (1	4 z) . 	•	•	• •	•			• •	
•	. 0						÷`. ÷`.)	1 (13	3)	. (14	5		• •											• •			• •						• •		•					• •	
		r I	י רי	Ċ				<u>></u> П	сн. г.:	Č,			۲ ا	اس	1			l d			all	ז' >	- 2		•	So		hq	'€	G,		. ~	This	sl	iows		qflq	د د	G.				
	w	ng	- -		21 V(en ,	h e 11 -1	: H	-	6	1	•	g	່ງ	. (2)	-	Ľ	gh (c			J				•) . J							• •		JJ						
		In	٠.	fa	ন	gŀ	+g =	- 6	2 :		•				• •	٠		• •								• •		٠					• •		• •	•	•			•		• •	
						•	• •					•	•										• •			• •			• •				• •		• •		•	• •				• •	
	•		• •		•	•	• •	•	•	•	•	•	•			•	•	• •	•	•	•	•	• •	•	•	• •	•	•	• •	•		•	• •	•	• •	•	•		•			• •	
			• •																																								
		•	• •		•		• •			•	•	•	•		• •		•	• •		•		•	• •			• •			• •		• •		• •		• •				•	•		• •	
			• •		•			•		•	•	•			• •	•								•	•						• •						•						
			• •		۰		• •				•	٠			• •	٠		• •		٠						• •		۰		٠	• •		• •		• •	•			•	• •		• •	
	•											•											• •		•	• •							• •		• •		•						
			• •																																• •								
•	•	•	• •		•	•	• •	•	•	•	•	•	•	• •	• •	•		• •	•		•	•	• •	•	•	• •		•	• •	•	• •	•	• •	•	• •	•	•			•		• •	

theoren	n Every	Conjega	y clas	ss in	G ha	S Size	Card	i naloty	$) \alpha v \alpha$	king I	- !.	• •			• •			
	ky has fi 2), (123),			classe	s {){ }	Sliz) (3A) (3)/24)	(14)(2)	s){	5(12-	9) (132)	(14	3) (2	34)	2 1 1
. - 9 A	ty need in	line line	garg			~??.	ζ		· · · ·)
{ (14)	٤), (123),	(134), (2	=15) {	•								•••						
Q	123) (12)(3-			23)(14)= (1	4)(23);;	((32)	(12)(54)	(152) -		24) -			•			
		(132)										• •				• • •	••••	• •
(12	23)(124)((123) =	(23*	1)														
	Sq, (124)				K42)	since	they	have	the sa	me Cy	cle H	ructu	re:					
(24)(12	2 4) (24)	= (142)	• • •							• • •			• • •	• • •	• •			• •
			1 C C C C C C C C C C C C C C C C C C C															
			`				• •				• • •				• •	• • •	• • •	
			`	ubgrou	p of	order	a 6.			· · · ·	Partit	aning	Ģ	înto	(eft	Co Se	ts	••••
(14) (1 Eg. 5	24) (14) Theorem	$= (42)$ $A_{q} has$) No S	ubgrou el Suk	p of group	order KJ	r 6. F of	- orde	a, الا ا	= 6 .	Partiti 1: C	ioning	G-	into	left 3 as	©50 G =	ts Kv	Kg
(14) (1 Eg Ref Suppos G = 1	24) (14) Theorem se G=Aq KUgK	= (421) Ag has has a votere) no s norma g∉k	<	р о р дотр ([6: h	order $K \leq \frac{16}{1K}$	r = 6. r = 6. r = 1.	$r^2 = 2$	n K) and	= G . d parti	Parkiti tion G	into	6- right	înto Coset	(eft 75 as	Cose G =	ts Kv	Kg
(14) (1 Eg Ref Suppos G = 1	24) (14) Theorem se G=Aq KUgK	= (421) Ag has has a votere) no s norma g∉k	<	р о р дютр ([6: h	$K \leq \frac{1}{100}$	$\frac{1}{2} = \frac{1}{2}$	r^2 orde $r^2 = 2$	en K) and	= 6 1 part	Parkiti tion G	into	6- right	înto Coset	(eft :s as	@50 G =	ts Kv	Kg
(14) (1 Eg Ref Suppos G = 1	24) (14) Theorem	= (421) Ag has has a votere) no s norma g∉k	<	р о р дотр ([6: h	$K \leq c$ $K \leq $	$\frac{1}{2} = \frac{1}{2}$	$r^2 = 2$	en K) and	= 6 d parti	Partitu tion G	into	G- rìght	înto coset	(eft 3 as	©50 G =	ts Kv	Kg .
(14) (1 Eg Ref Suppos G = 1	24) (14) Theorem se G=Aq KUgK	= (421) Ag has has a votere) no s norma g∉k	<	р о р дгохор ([6: 1	$K \leq c$ $< \frac{1}{7} = \frac{16}{1k}$	2 6. 5 of -1 = 1 (1 = 1	$rac{2}{6} = 2$	r K) and	= 6 1 parti	Partiti tion G	into	6- right	înto Coset	(eft 3 as	©50 G =	ts Kv	Kgb
(14) (1 Eg Ref Suppos G = 1	24) (14) Theorem se G=Aq KUgK	= (421) Ag has has a votere) no s norma g∉k	<	р о р дюнр ([6: h	$r = \frac{16}{1k}$	2 6. 6 of (] = 1	$rac{1}{2} = 2$	z. K .	= G d parti	Parkiti	indo	G- right	înto coset	(eft is as	(c) Se (c) =	ts Kv	Kg
(14) (1 Eg Ref Suppos G = 1	24) (14) Theorem se G=Aq KUgK	= (421) Ag has has a votere) no s norma g∉k	<	р о р дотр ([6: r	$radex}{K \leq 1}$		$rac{2}{6} = 2$	en K) and	= 6 1 part	Partiti tion G	ido	G- rìght	îv to coset	(eft s as	C =	ts K v	i i i i i i i i i i i i i i i i i i i
(14) (1 Eg Ref Suppos G = 1	24) (14) Theorem se G=Aq KUgK	= (421) Ag has has a votere) no s norma g∉k	<	9 of group ([6: 1	rades $K \leq c$ $\langle 7 = \frac{16}{1k}$		$rac{2}{6} = 2$	z K) and	= G f parti	Partiti tion G	inte	G- rìght	into coset	(eft s as	(c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	ts K v	Kgb
(14) (1 Eg Ref Suppos G = 1	24) (14) Theorem se G=Aq KUgK	= (421) Ag has has a votere) no s norma g∉k	<	9 of group ([6: 1	$r = \frac{16}{1k}$		$rac{2}{6} = 2$	z K -	= G	Partiti tion G	into into	G- right	înto coset	(eft is as	650 G =	ts Kv	Kg J

Let G, H be groups (assumed to be multiplicative with identify elements $e_c \in G$, $e_H \in H$).
A homomorphism $G \rightarrow H$ is a map satisfying $\phi(gg') = \phi(g) \phi(g')$ for all $g, g' \in G$. Note: An isomorphism is the same thing as a bijective homomorphism.
Note: An isomorphism is the same thing as a bijective honomorphism
Eq. $\phi: GL_n(F) \rightarrow F^*$, $\phi = det$.
invertible multiplicative nxn matrices Group of nonzero orch a field F U clements of F
Properties: $\phi(e_c) = e_H$ $\left(\phi(e_c) = \phi(e_ce_c) = \phi(e_c)\phi(e_c) = \phi(e_c) = e_H \right).$
If $g \in G$ has order a then $ \phi(g) $ divides $n = g $. e_g . if $ g = G$ then $ \phi(g) $ has order $1, 2, 3$ or G . $g^{n} = e_g \implies \phi(g^{n}) = \phi(e_g) = e_H$
¢(q)
$\phi(\vec{q}') = \phi(\vec{q})'$ since $q\vec{q}' = e_c \Rightarrow \phi(\vec{q}q') = \phi(e_c) = e_H$
The kernel of a homomorphism $\phi: G \rightarrow H$ is $\ker \phi = \{g \in G : \phi(g) = e_{H} \}$. (Compare: the null space of a linear transformation)
Theorem: ker et is a subgroup of G.
Proof If $g, g' \in \ker \phi$ then $\phi(g) = \phi(g') = e_{\phi}$ then $\phi(gg') = \phi(g)\phi(g') = e_{g}e_{g} = e_{g}$ so $gg' \in \ker \phi$.
Since $\phi(e_6) = e_H$, $e_6 \in \ker \phi$.
If $g \in \ker \phi$ then $\phi(g) = e_{\mu}$ so $\phi(g') = \phi(g') = e'_{\mu} = e_{\mu}$ so $g' \in \ker \phi$. So $\ker \phi \leq G$.
Note: If \$ is one-to-one then ber \$ = Eeg3. Conversely, if ker \$ = Seg3 then we show \$ is one-to-one:
If $\phi(q) = \phi(q')$ then $\phi(\bar{q}'q') = \phi(\bar{q}') \phi(q') = \phi(q\bar{q}) \phi(q') = e_4$ is $\bar{q}'q' \in \ker \phi = \bar{i}e_{\bar{q}}^2$ so $\bar{q}'q' = e_{\bar{q}}$ so $q'=q$.

The image of a homomorphism $\phi: G \rightarrow H$ then the image $\phi(G) = \{\phi(g): g \in G\}$ is a subgroup of H. <u>Proof</u> Given two elements in $\phi(G)$, say $\phi(g)$, $\phi(g')$ for some $g, g' \in G$, then
Proof Given two elements in \$(G), say \$(g), \$(g') for some g, g' E G, then
$\phi(q)\phi(q') = \phi(qq') \in \phi(G)$. Also $e_{\mu} = \phi(e_{G}) \in \phi(G)$. If we take any occurrent in $\phi(G)$, say $\phi(q)$
then $\phi(g) = \phi(g') \in \phi(G)$. So $\phi(G) \leq H$.
Note: $\phi: G \rightarrow H$ is onto $iff \phi(G) = H$.
Eq. Define $\phi: S_4 \rightarrow S_3$ as follows: Take $\pi_1 = (12)(34)$, $\pi_2 = (13)(24)$, $\pi_3 = (14)(23)$ in S_4 . These
form a conjugacy class in Sq $\{T_1, T_2, T_3\} = X$ (Really $\phi(\sigma) \in Sym X = Sym \{T_1, T_2, T_3\}$)
Live ac S we have a way 1 - 2 . The one of the second seco
$F_{g}, \phi((13)): \pi, \mapsto (13)\pi_{1}(13)' = (13)(12)(34)(13)' = (32)(14) = (14)(23) = \pi_{3}$ $\pi_{2} \mapsto (13)\pi_{2}(13)' = (13)(13)(24)(13)' = (31)(24) = (13)(24) = \pi_{2}$ $\phi((13)) = (13)\pi_{2}(13)' = (13)(14)(23)(6)' = (34)(21) = (12)(34) = \pi_{3}$
$ \begin{aligned} \pi_{3} \mapsto (1^{3})\pi_{2}(1^{5}) & (1^{3})(1^{2})(1^{2})(1^{2})(1^{2})(1^{2})(1^{2}) & = (1^{4})(3^{2}) = (1^{4})(2^{3}) = \pi_{3} \\ \varphi((1^{4}2)) & \pi_{1} \mapsto (1^{4}2)\pi_{1}(1^{4}2)^{T} & = (1^{4}2)(1^{3})(2^{4})(1^{4}2)^{T} & = (4^{3})(1^{2}) = (1^{2})(3^{4}) = \pi_{1} \\ \pi_{2} \mapsto (1^{4}2)\pi_{2}(1^{4}2)^{T} & = (1^{4}2)(1^{3})(2^{4})(1^{4}2)^{T} & = (4^{2}2)(1^{3}) = (1^{3})(2^{4}) = \pi_{2} \\ \pi_{3} \mapsto (1^{4}2)\pi_{3}(1^{4}2)^{T} & = (1^{4}2)(1^{4})(2^{3})(1^{4}2)^{T} & = (4^{2}2)(1^{3}) = (1^{3})(2^{4}) = \pi_{2} \end{aligned} $
\$ is onto Sz. (why? \$ \$ (Sq) is a subgroup of Sz. By Lagrange's Theorem, (\$ (Sq)) is divisible by
$ \phi((13)) = (13) = 2$ and $ \phi((142)) = (132) = 3$ so $\phi(S_4) = S_2$
$\ker \phi = (S_{4}(X) = \langle T_{1}, T_{2} \rangle = \{(1), T_{1}, T_{2}, T_{3} \} \text{ is a subgroup of order } A \text{ in } S_{4}.$
the image of a homomorphism of the standard of the homomorphism of the standard of the standar
ϕ is a homomorphism; it is $4 \cdot \frac{1}{10} - 1$. i.e. the subgroup $\phi(G) = \frac{2}{5}\phi(g)$: $g \in G^{3} \leq H$ is a homomorphic image of G .

Fractional Linear Transformations (or Linear Fractional Transformations)	
A may RUEOS - RUEOOS (actually a perimitation) of the form [cd]: x - ax+b where ad-bc:	<i>ŧo.</i>
$G_{L_2}(\mathbb{R}) = \begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} & a & a & b \\ c & d & \end{pmatrix} for a dual invertible 2×2 real matrices.$	· ·
$\begin{aligned} G[_{2}(\mathbf{k}) = \int (c d)^{n} dd dc + c \int (dx + \beta) + dd dd dc + dx + \beta) + b &= \frac{a(\alpha x + \beta) + b(x + s)}{c(\alpha x + \beta) + d(x + s)} = \frac{(\alpha x + b^{2}) x + (\alpha \beta + b^{2})}{(\alpha x + d^{2}) x + (c \beta + d^{2})} \\ &= \begin{bmatrix} a\alpha + b^{2} & \alpha \beta + b^{2} \\ (\alpha + d^{2}) & c \beta + d^{2} \end{bmatrix} (x) \\ Compare with multiplication of actual 2x2 investible matrices: \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & \beta \\ c & s \end{pmatrix} = \begin{pmatrix} a\alpha + b^{2} & \alpha \beta + b^{2} \\ (\alpha + d^{2}) & x + (c \beta + d^{2}) \end{bmatrix} \\ \begin{pmatrix} a & b \\ c & s \end{pmatrix} = \begin{pmatrix} a\alpha + b^{2} & \alpha \beta + b^{2} \\ (\alpha + d^{2}) & \alpha \beta + b^{2} \end{bmatrix} \end{aligned}$	•••
= [aa+br a p+b8] (x) = [aa+dr cp+d8] (x) (magging with multiplication of actual 2×2 investible matrices:	• •
$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & s \end{pmatrix} = \begin{pmatrix} a\alpha + b\gamma & a\beta + bS \\ c\alpha + d\gamma & c\beta + dS \end{pmatrix} $	• •
We denote by $PGL_2(R)$ the group of all fractional linear transformations $R \cup \{\infty\} \rightarrow R \cup \{\infty\}$ i.e. $PGL_2(R) = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ab, c, d \in R, ad-bc \neq 0 \}$	•••
This is a homomorphic image of $6L_2(\mathbb{R})$ under the homomorphism $\phi: GL_2(\mathbb{R})$, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longrightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. This map is a homomorphism : $\phi(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) \begin{pmatrix} a & b \\ T & s \end{pmatrix}) = \phi(\begin{pmatrix} aa+br & ab+bs \\ ca+dr & cb+ds \end{pmatrix})$	· ·
$= \begin{bmatrix} a\alpha + b\beta & a\beta + b\beta \\ a\alpha + b\beta & a\beta + b\beta \end{bmatrix} = \begin{bmatrix} a & b\beta \\ c & d\beta \end{bmatrix} = \phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \phi \left(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \right).$	• •
(his homorphism is <u>noto</u> PGL ₂ (R) by definition but it's not onto because $\phi((\lambda a \lambda b)) = [\lambda a \lambda b] = [a b]$ Since $[\lambda a \lambda b](x) = \frac{\lambda a x + \lambda b}{\lambda c x + \lambda d} = [a b](x)$	

$\begin{bmatrix} 3 & 4 \\ 1 & 7 \end{bmatrix}(5) = \frac{3\times5+4}{1\times5+7} = \frac{19}{12}$ $\begin{bmatrix} 3 & 4 \\ -3 \end{bmatrix}(6) = \frac{3\times60+4}{1\times5+7} = 3$ In $GL_2(\mathbb{R})$, $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{1} = 3$	$= \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$	(ad-bc = 0)
		eld of order 2
$\begin{bmatrix} 3 & 4 \\ 1 & 7 \end{bmatrix} \begin{pmatrix} -7 \\ -7 \end{pmatrix} = \frac{3x(-7) + 4}{[x(-7) + 7]} = \frac{-17}{0} = \infty$	(GL_(F_)) =	$(\hat{q}^2 - i)(\hat{q}^2 - q)$
$\begin{bmatrix} 3 & 4 \\ 0 & 4 \end{bmatrix} (\infty) = \frac{3 \times 00 + 4}{0 \times 00 + 7} = \infty$	SL(E) =	$(q^2-1)(q^2-q)$ divide $(q^2-1)q$ by q^2 .
Every fractional linear tromsformation is a permittetion of $\mathbb{R} \cup \{\infty\}$ $PGL_2(\mathbb{R})$ is a group. $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^2 = adbc \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.		
$PGL_2(\mathbb{R})$ is a group. $\begin{bmatrix} a \\ c \end{bmatrix} = add_{bc} \begin{bmatrix} a \\ -c \end{bmatrix} = \begin{bmatrix} -c \\ a \end{bmatrix}$		
The identity to i (a) = the two = a.		
You can think of $PGL_{2}(\mathbb{R})$ as the same as $2\pi z$ invertible matrices but with multiples i.e. $\lambda \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} A & A \\ A & A \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} A & A \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	iere we identity	ontero scalar
$\overline{GL_{2}(\mathbb{F}_{2})} = \{(0,0), \overline{(0,1)}, (0,0), (0$	2)=3×2=6.	· · · · · · · · · ·
$F_2 = \{0, 1\}$ is the field of order 2:	· · · · · · · · · · ·	
$PGL_{2}(\mathbf{F}_{2}) = \left\{ \left[$	÷ 3	
Why? PGL2(F2) is a group of parentations of 30, 1, 003 Sym 30, 12	1,003 all permitetions of 0,1,003	
So PGL2 (F2) is isomorphic to a subgroup of S3. 52		
$\left[\nabla C_{2} \left(\prod_{3} \right) \right]^{-} \left(\sum_{1} \left(\sum_{j} \right)^{-} \right)^{-} \sum_{j} \left(\sum_{j} \left(\sum_{j} \right)^{-} \right)^{-} \right)^{-} \sum_{j} \left(\sum_{j} \left(\sum_{j} \left(\sum_{j} \right)^{-} \right)^{-} \sum_{j} \left(\sum_{j} \left(\sum_{j} \left(\sum_{j} \right)^{-} \right)^{-} \sum_{j} \left(\sum_{j} \left(\sum_{j} \left(\sum_{j} \right)^{-} \right)^{-} \sum_{j} \left(\sum_{j} \left(\sum_{j} \left(\sum_{j} \right)^{-} \right)^{-} \sum_{j} \left(\sum_{j} \left(\sum_{j} \left(\sum_{j} \right)^{-} \right)^{-} \sum_{j} \left(\sum_{j} \left(\sum_{j} \left(\sum_{j} \left(\sum_{j} \right)^{-} \right)^{-} \sum_{j} \left(\sum_{j} \left$	2(#3) is a group of of #2 5003 = Ec	pormitations
$IF_{3} = \{0, 1, 2\} \qquad = 2 = -1 \qquad \left(PGL_{2}(IF_{3})\right) = \frac{48}{2} = 24 \qquad PGL_{2}(IF_{3}) \cong S_{4}.$ $IF_{4} = \{0, 1, 2\} \qquad = 12 = -1 \qquad \left(PGL_{2}(IF_{3})\right) = -7 \qquad PGL_{2}(IF_{3}) \cong S_{4}.$ $IF_{4} = \{0, 1, 2\} \qquad = 12 = -1 \qquad \left(PGL_{2}(IF_{3})\right) = -7 \qquad PGL_{2}(IF_{3}) \cong S_{4}.$ $IF_{4} = \{0, 1, 2\} \qquad = -1 \qquad \left(PGL_{2}(IF_{3})\right) = -7 \qquad PGL_{2}(IF_{3}) \cong S_{4}.$ $IF_{4} = \{0, 1, 2\} \qquad = -1 \qquad \left(PGL_{2}(IF_{3})\right) = -7 \qquad PGL_{2}(IF_{3}) \cong S_{4}.$ $IF_{4} = \{0, 1, 2\} \qquad = -1 \qquad \left(PGL_{2}(IF_{3})\right) = -7 \qquad PGL_{2}(IF_{3}) = -7 \qquad PGL_{2}(IF_{3$, <u>, , , , , , , , , , , , , , , , , , </u>

Π	e. 01 e	1																	
$f_{4} = \{0, 1, \alpha, \beta\}$	field of o	der 4																	
+101 × B	× 10 1 x B											• •							
00120	0 0 0 0 0			• •		• •	• •		• •	• •	• •	• •		• •	• •	• •	• •		٠
	1 0 1 × β					• •	• •		• •	• •	• •	• •		• •	• •	• •	• •		•
	x 0 x B 1			• •			• •	• • •	• •	• •	• •	• •		• •	• •	• •	• •	• •	
· · · · · · · · · · · · ·	BIOBIZ																		
101 (EN1 - 12	12																		
$\left GL_{2}(\mathbb{F}_{4}) \right = \left(4^{2} - 1 \right)$		× 12 =	80																
$\left(SL_{2}(\mathbb{F}_{q})\right) = \frac{180}{3}$	2 = 60 × × × ×													• •					
				• •			• •		• •	• •	• •	• •			• •	• •	• •		
$ A_{5} = \frac{5!}{2} = 60$					• • •		• •		• •	• •	• •	• •		• •	• •	• •	• •		٠
$SL_2(\mathbb{F}_4) \cong A_5$.					• • •					• •	• •	• •		• •	• •	• •	0 0		•
														• •					
6 91 -	6.5		al	CT O	$\sim \sim \sim$	0. 19													
6 91 -	d]: ad-bc	Ξ (,)	a,6,c,d	€₽		SL2 (A	((((((())))	· · ·	• •	• •	• •	• •		• •	• •	• •	• •	• •	
$PSL_{r}(IF_{q}) = \begin{cases} a \\ c \end{cases}$		· · · ·						dia		· · ·) ξ _α ο	,	n E					••••	•
6 91 -		· · · ·						ations,	of	n F) §00	}, = }.	Ę	0, 1	, ۲, «,	β, 1	∞ ∞}}	· ·	•
$PSL_{2}(IF_{4}) = \left\{ \begin{bmatrix} d \\ c \end{bmatrix} \right\}$ The map $SL_{2}(IF_{4})$	-> PSL, (Fg)	· · · ·	a,b,c,d acting					ations	of) §00	} = }	٤ /	0, 1 2	, ≺,	ß,	a an} an} an	· · ·	•
$PSL_{2}(\overline{H}_{4}) = \left\{ \begin{bmatrix} a \\ c \end{bmatrix} \right\}$ $The map SL_{2}(\overline{H}_{4})$ $\begin{pmatrix} a \\ c \end{pmatrix}$	$\rightarrow BL_{2}(\mathbb{F}_{4})$ $\mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix}$		acting	065 c 4				ations	of) Şao	} = ∞0 	٤ 	0, 1	, ∝,	ß,	a a a a a a a a a a a a a a a a a a a	· · ·	•
$PSL_{2}(\overline{H}_{4}) = \left\{ \begin{bmatrix} a \\ c \end{bmatrix} \right\}$ $The map SL_{2}(\overline{H}_{4})$ $\begin{pmatrix} a \\ c \end{pmatrix}$	$\rightarrow BL_{2}(\mathbb{F}_{4})$ $\mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix}$		acting	065 c 4				ations	e e e e e	F T		} = 00 0	٤ 	0, 1	, ∼ ,	β,			•
$PSL_{2}(IF_{4}) = \left\{ \begin{bmatrix} d \\ c \end{bmatrix} \right\}$ The map $SL_{2}(IF_{4})$	$\rightarrow BL_{2}(\mathbb{F}_{4})$ $\mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix}$			065 c 4				ations	of of)	} = 00 0	٤ 	0, 1	, ∼, , ∼,		ana }		•
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(IF_{4}) = \begin{cases} a \\ c \\ c \end{cases}$ $\begin{pmatrix} a \\ b \\ c \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (x) = \frac{ xx+1 }{0x\pi+1}$	$ \rightarrow PSL_{2}(F_{4}) \\ \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ \frac{1}{1} = 8 + 1 $	(0, 1	acting)(a, p)	as 4	el e	ren p	annit	ations	of		0 500	} = }	2	0, 1	ن بر بر بر بر بر بر بر بر بر بر بر بر بر	β, ,			
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(IF_{4}) = \begin{cases} a \\ c \\ c \end{cases}$ $\begin{pmatrix} a \\ b \\ c \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (x) = \frac{ xx+1 }{0x\pi+1}$	$ \rightarrow PSL_{2}(F_{4}) \\ \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ \frac{1}{1} = 8 + 1 $	(0, 1	acting)(a, p)	as 4	el e	ren p	annit	ations,	of 		0 500	} = 00	٤ /	0, 1	، مر , م , مر , م , مر , م , م , م , م , م , م , م , م	β, .			
$PSL_{2}(\overline{H}_{4}) = \left\{ \begin{bmatrix} a \\ c \end{bmatrix} \right\}$ $The map SL_{2}(\overline{H}_{4})$ $\begin{pmatrix} a \\ c \end{pmatrix}$	$ \rightarrow PSL_{2}(F_{4}) \\ \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ \frac{1}{1} = 8 + 1 $	(0, 1	acting)(a, p)	as 4	el e	ren p	annit	ations	of		0 500	} = '	۶ //	0, 1	، ۱- ۲, ۱- ۲,	¢,,			
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(IF_{4}) = \begin{cases} a \\ c \\ c \end{cases}$ $\begin{pmatrix} a \\ b \\ c \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (x) = \frac{ xx+1 }{0x\pi+1}$	$ \rightarrow PSL_{2}(F_{4}) \\ \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ \frac{1}{1} = 8 + 1 $	(0, 1	acting)(a, p)	as 4	el e	ren p	annit	ations	of		0 500		۶ ۲	0, 1		ę,,			
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(IF_{4}) = \begin{cases} a \\ c \\ c \end{cases}$ $\begin{pmatrix} a \\ b \\ c \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (x) = \frac{ xx+1 }{0x\pi+1}$	$ \rightarrow PSL_{2}(F_{4}) \\ \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ \frac{1}{1} = 8 + 1 $	(0, 1	acting)(a, p)	as 4	el e	ren p	annit	at ions	of		0 500		£	0, 1		ę, ,			
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(IF_{4}) = \begin{cases} a \\ c \\ c \end{cases}$ $\begin{pmatrix} a \\ b \\ c \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (x) = \frac{ xx+1 }{0x\pi+1}$	$ \rightarrow PSL_{2}(F_{4}) \\ \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ \frac{1}{1} = 8 + 1 $	(0, 1	acting)(a, p)	as 4	el e	ren p	annit	at ions	of		0 500		£	0, 1					
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(IF_{4}) = \begin{cases} a \\ c \\ c \end{cases}$ $\begin{pmatrix} a \\ b \\ c \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (x) = \frac{ xx+1 }{0x\pi+1}$	$ \rightarrow PSL_{2}(F_{4}) \\ \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ \frac{1}{1} = 8 + 1 $	(0, 1	acting)(a, p)	as 4	el e	ren p	annit	at ions	đ		0 500		٤ -5	0,1					
$PSL_{2}(IF_{4}) = \begin{cases} a \\ c \end{cases}$ $The map SL_{2}(IF_{4}) = \begin{cases} a \\ c \\ c \end{cases}$ $\begin{pmatrix} a \\ b \\ c \\ c \\ d \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (x) = \frac{ xx+1 }{0x\pi+1}$	$ \rightarrow PSL_{2}(F_{4}) \\ \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ \frac{1}{1} = 8 + 1 $	(0, 1	acting)(a, p)	as 4	el e	ren p	annit	at ions	of		0 500		£	0, 1		e			

Orbits and Stabilizers for Group Actions Eq. G = symmetry group of $\frac{3}{2}$, G < S_q, G = $\langle (1234), (13) \rangle$ a dihedral group of G permites the four vertices transitively (meaning if x, y $\in \{1, 2, 3, 4\}$ then there exists g \in G such that g(x) = y). For legal moves of a Rubik's cube, the group of all moves does not permite the 26 small cubes (the group has three orbits of size 12, 8, 6) 12+8+6=26. $0(1) = {all corner cubes} 2, (0(1)) = 8$ A group action is fremsitive if there is only only one orbit. 0(2) = 12. 0(3) = 6The stabilizer of x is $Stab_{\mathcal{C}}(x) = G_x = \{g \in G : g(n) = x\} \leq G$. (a subgroup) eg. in the dihedral group above, $\operatorname{Stab}_{G}(2) = G_2 = \{ all \text{ elements of } G \text{ fixing } 2\} = \{(), (13)\}$ $\operatorname{Stab}_{G}(1) = \{(), (24)\} = \operatorname{Stab}_{G}(3) = \langle (24) \rangle$ $= \langle (13) \rangle$ The orbit of x is $O(x) = \{g(x) : g \in G\}$. In this case there is only one orbit $O(1) = \{1, 2, 3, 4\} = O(2) = O(3) = O(4)$ Theorem If G permites $X = [n] = \{1, 2, ..., n\}$ then for every $x \in X$, $|Stab_{g}(x)| |O(x)| = |G|$. In our dihedred group of order 8: $|Stab_{G}(x)| = 2$ |(O(x)| = 4, |G| = 8

We have implicitly used this ! eq. when calculating the symmetry group of a cube fi
(G) = Stab(v) O(v) shere v is a vertex
$= 6 \times 8 = 48$
ICI- Ctoba(E) 10/E) where E is a face
$ G = State(F) 0(F) \text{where } F \text{ is a face}$ $= 8 \times 6 = 48$
$= 8 \times 6 = 48$ or [c[= Stab(e) (0(e)]
$= 4 \times 12 = 48$
More examples of stabilizers and orbits
More examples of stabilizers and orbits $G = \langle (1234), (13) \rangle \overset{s}{\underset{q}{\overset{b}{\underset{q}{\overset{b}{\underset{q}{\overset{c}{\underset{q}{\overset{c}{\underset{q}{\underset{q}{\overset{c}{\underset{q}{\underset{q}{\underset{q}{\overset{c}{\underset{q}{\underset{q}{\overset{c}{\underset{q}{\underset{q}{\underset{q}{\underset{q}{\underset{q}{\underset{q}{\underset{q}{\underset$
$\mathcal{O}(a) = \{a, b, c, d\}$ $\mathcal{O}(a) = \{a, b, c, d\}$ $\mathcal{O}(a) = \{b, c, d\}$ $\mathcal{O}(a) = \{b, c, d\}$
$\mathcal{O}(d) = \{d, d'\}$
$Stab (d) = \{(), (13), (24), (13), (24)\}, a Klein four-group (0(1)) (13), (24), (13), (24)\}, a Klein four-group (0(1)) (13), (24), (13), (24), (13), (24), (13), (24), (13), (24), (13), (24), $
G = Stab(d) O(d) $ O(x) \subseteq X$ is not a group, just a set of points
$8 = 14 \times 2$

G = GL3 (F) where F is a field
Gacts on F ³ , permiting vectors
G acts on F^3 , permitting vectors The stabilizer of $e_i = \binom{1}{0}$ is $g \in G : g e_i = e_i $ $g e_i = e_i $
$G = GL_{3}(F) \text{where } F \text{ is a field}$ $G = GL_{3}(F) \text{where } F \text{ is a field}$ $G = acts \text{ on } F^{3}, \text{permitting vectors}$ $f^{0} = \left\{ \begin{array}{c} 0 \\ 0 \end{array}\right\}, \text{permitting vectors} ge_{i} = e_{i} \\ ge_{i} \\ ge_{i} = e_{i} \\ ge_{i} $
$O(e_i) = \{all wonzero vectors\} = F^3 - \{[\circ_0]\}$
F^3 has two orbits: $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$, $F^3 \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$.
$Stab_{G}(0) = G$ (Permx)
Theorem IF G acts on X (i.e. G permites X i.e. $G = Sym X$) and $x \in X$ (any point)
then $ Stab_{g}(x) \cdot Q(x) = G $.
Proof Let $H = Stack_{G}(x)$ and $O(x) = \{x_{1}, x_{2}, \dots, x_{k}\} \subseteq X$. Then there exist $g_{1}, \dots, g_{k} \in G$.
such that q:(x) = x: (by definition). * (Note: g:,, g are not uniquely determined.)
Then $G = g_1 H \sqcup g_2 H \sqcup g_3 H \sqcup \cdots \sqcup g_k H$. (ALIB denotes disjoint minon i.e. AUB with Why? If $g \in G$ then $g(x) \in O(x)$ so (no overlap, $A \cap B = \emptyset$)
$g(x) = x$; for some $i \in \{1, 2, \dots, k\}$ and $g_i(x) = x$; so $g_i^*(g(x)) = g_i(x_i) = x$ so $g_i^*g \in H^{\perp}$ Sub(x)
so $\overline{g_i}gH = H$ i.e. $g \in gH = g_iH$. Now $k = Q(x) = [G:H]$ and
In fact $g:H = \{g \in G : g(x) = x_i\}$. $ G = H [G:H] = Stab(x) (O(x)) $.

Eq. $P = 4 \frac{9}{15} \frac{5}{12} = 7 \frac{2}{10} \frac{5}{12} = 7 \frac{2}{10} \frac{5}{12} = 7 \frac{2}{10} \frac{5}{12} = 7 \frac{5}{10} \frac{$ How many automorphisms does P have? Aut P = $\{$ automorphisms of P $\} \leq S_{10}$ actually $Sym \{0, 1, 2, \dots, 9\}$ Is And $P \cong S_5$? Theorem |AutP| = 120. G = Aut P on the vertex set \$0,1,2,...,93. Proof First enumerate orbits of G = Aut P on the vertex set 10,1,2,..., 15 There is only one orbit by considering the dihedral subgroup of order 10 and 10×12=120 (05)(1847)(2639), So G is transitive on vertices $|G| = 10|G_0|$, where G = Steb(0) $G_0 = Stab (0)$

Go = Stalog(0) We show $\{1,4,5\}$ is an orbit of G. Clearly 1,4 are in the same orbit of Go Since $(14)(23)(69)(78) \in G$. Also 5 is in the same orbit as 1 (under Go) since 4 2 9 5 1 $4 = \frac{4}{75} = \frac{5}{60} = \frac{5}{$ $(15)(28)(67) \in G_{0}$ = 3 (G, 1= 3x4=12 Does $G_{o,r}$ fix 2,6 or can it interchange them? $G_{o,r} = \{g \in G : g(o) = 0 \text{ and } g^{(r)} = i\}$ $G_{o_r f_r 2} = \{g \in G : g(o) = o_r \quad g(r) = 1, \quad g(z) = 2\}$ $|G_{0,1,2}| = |Skeb_{G_{0,1,2}}(3)| |O_{G_{0,1,2}}(3)| = 2|G_{0,1,2,3}| = 2x/=2$ $5_{0} \xrightarrow{q}_{0} \xrightarrow{q}_{0} \xrightarrow{q}_{0} \xrightarrow{(37)(45)(89) \in G_{0,1/2}} (0, (3) = \begin{cases} 3, 7 \\ 0, (2) \end{cases}$

() { has automorphism group G= Aut I which is Klein fourgroup (13)(46), (4) an orbit of G on the six vertices. So (G)= (G) the In the same way Proof : 1=4 Stab (1). =

In GL, (F), any two conjugate matrices have the same trace and determinant (i.e. Similar) (but not conversely in general) eg. in GL_2(F), ['o']. ['o'] are not similar (the only group element conjugate to the identity is itself). $f(AB) = f(BA) = \sum_{i=1}^{n} a_{ij}b_{ji}$ If A = MBM then AM = MB, det (AM) = det (MB) = det (M) det (B). $A - \lambda I = M(B - \lambda I)M' = MBM' - \lambda MIM' = A - \lambda I.$

Theorem Every conjugacy class in G has size (cardinality) dividing [G]. Eq. Aq has four conjugacy classes {()}, {(12)(34), (13)(24), (14)(23)}, {(124), (132), (143), (234)}, {(142), (123), (134), (243)}.
Proof G permites G by conjugation: if $g \in G$ and $x \in G$ then $g(x) = g \times g'$.
$g(x) = (124)(12)(34)(12) = (13)(24)$ $\downarrow \downarrow $
The orbits of 6 acting on 6 by conjugation are just the conjugacy classes, by definition.
The stabilizer of any point $\pi \in G$ is $\operatorname{Stab}_{G}(x) = \{g \in G : g(x) = \pi \}$. $g(x) = \pi$ iff $g\pi g' = x$ iff $gx = \pi g$ iff g commutes with π i.e. $\operatorname{Stab}_{G}(x) = C_{G}(x)$.
$ G = C_{c}(x) \cdot (no. \text{ of conjugate of } x \text{ in } G)$ $ Stab_{c}(x) = C_{c}(x) \cdot (O(x) .$ $ Stab_{c}(x) = (O(x) .$ $ C_{c}(x) = (O(x) .$
$E_{g} = C_{A_{4}}((12)(34)) = \langle (12)(34), (13)(24) \rangle = \{(), (12)(34), (13)(24), (14)(23) \}, (14)(23) \}$

The conjugacy class of (124) in Sq is
$(Q_{S_4}(124)) = \{ (124), (123), (134), (142), (132), (143), (234) \} $
Strange (124) in Au is
The conjugacy class of (124) in Aq is $(\mathcal{L}_{4}(124)) = \{(124), (132), (143), (234)\}$
A_{4}
$C_{S_{a}}((124)) = \langle (124) \rangle = \{ (), (124), (142) \}$
$\binom{4}{C_{A_4}}(12.4) = \langle (12.4) \rangle$
$I_{n} S_{q}$, $ S_{q} = C_{s_{q}}((124)) \cdot C_{onjugacy} class r (124) $
$24 = 3 \times 8$
In Aq, $ Aq[= (Aq(123)) conjugacy class of (124)]$
· · · · · · · · · · · · · · · · · · ·
$ _{2} = 3 * 4$.

History of Group Theory (finite vs. infinite groups) (Another Cayley)
Historically, before we had axioms for group theory, we considered permutation groups
Historically, before we had axioms for group theory, we considered permutation groups (subgroups of S.). This was motivated by the problem of finding roots of polynomials
Roots of $x^2 + 5x + 2 = 0$ are $\frac{-5 \pm \sqrt{17}}{2}$ where $\sqrt{17}$ is the positive root of $x^2 - 17 = 0$.
Similar forundas exist for finding roots of which ax3+ bx2+ cx+d=0
and quartics $4x^4 + 6x^2 + cx^2 + dx + e = 0$. No such formula exists for roots
of a general quintic $ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$.
¿ Evaniste Galois { Niels Alel
) Niels Aleel
The roots of a polynomial f(x) of acyre in the for is plyable.
{ Niels Alael The roots of a polynomial $f(x)$ of dogree n can be expressed "explicitly" (using $t, x, -, \pm, \sqrt{n}$) iff the Galois group of $f(x)$ is plyable. (using $t, x, -, \pm, \sqrt{n}$) iff the Galois group of $f(x)$ is plyable. The Galois group is the good of permitations of the roots of $f(x)$ The Galois group is the good of permitations of the roots of $f(x)$ found using field automorphisms. found using field automorphisms. $f(x) = \frac{-5+\sqrt{17}}{12}$, $\beta = \frac{-5-\sqrt{17}}{12}$.
The Galois group is the good of planulations of
found wing field automorphisms.
$g_{1} = \frac{1}{x^{2} + 5x + 2} = (x - \alpha)(x - \beta), \alpha = \frac{-5 + \sqrt{17}}{2}, \beta = \frac{-5 - \sqrt{17}}{2}$
There is an antomorphism of C interchanging 8, B.
······································

Solving systems of PDE's (specifically, explicit/exact/analytic solutions) rother than approximate solutions). Sockurs Lie Axioms of Group Theory came after all these examples. Lie groups /algebras Emmy Noether