

Eg. $\mathbb{Z}_{32} = \{0, 1, 2\}$ (ember addition mod 3) is isomorphic to $A_2 = \langle (123) \rangle = \{ (23) , (132) \}$ (132) (123) (132) 0 () (123) (132)
(132) (132) $\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)^{2}+\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)^{2}+\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)^{2}+\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)^{2}+\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)^{2}+\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac$ (123) (123) (132) (132) (132) \therefore ω ω ω^2 We say two groups G, H are isomorphic $(G \cong H)$ if
there exists a bijection $\phi: G \rightarrow H$ such that $\phi(xg) = \phi(x)\phi(g)$ operation Coperation $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\phi(x)$ $\phi(x)$ Satisfying $\phi(x+y) = \phi(x) \circ \phi(y)$ Au isomorphism $\phi : \mathbb{R} \longrightarrow (0, \infty)$, $\phi(x+y) = \phi(x) \phi(y)$ is defined by $\phi(x) = e^x$ unter unterstigliertien $e^{k+1} = e^x \cdot e^y$
addition untiplication \mathbb{R} # \mathbb{R}^2 $\ell_{n} = \phi : (0, \infty) \longrightarrow \mathbb{R}$ since R (reels under addition)
has only one element of finite order
sheneas R" has two dements of finite order: ±1

is *isomorphic* to $\frac{1}{a}$ $\begin{array}{|c|c|c|} \hline a & b & c & a \\ b & c & a & b \end{array}$ $6(1)=6$ c c
 $(2)=9$ b h $6(2) = 6$ $\mathbb{Z}_{3\mathbb{Z}}$ $\frac{1}{\sqrt{1-\frac{1$ Every group of order 1 is isomorphic to \mathcal{P} then multiply both sides by \vec{c} on the right $a(c\vec{c}') = b(c\vec{c}')$ e e a b Every group af order 3 a = b
a a b e is cyclic (isomorphic to $\frac{z}{z}$ under addition).

e e a b c Klein
e e a b c four-group e e a b c cyclic group
a a e c b four-group a a b c e of order 4 $\begin{array}{|c|c|c|c|c|}\n\hline\nb&b&c&e&a \\
c&b&a&e\n\end{array}$ CCL a e non-identify cl Two cases either all elements of G have order 2, or G has an element not of order 2.
Theorem: There are exactly two groups of order 4 up to somerphism: the Klein four-group and the cyclic group of order 9. eabed enclie group
e eabed enclie group e a b c d 15 not a group! e a b c d It is a quasignoup,
in fact since it has
an identity e, it is a Goop $a \mid a$ e $c \mid d \mid b$ $\begin{array}{ccc} b & b & c & d & e & a \\ c & d & e & a & b \end{array}$ $\langle a \rangle = \{e, a, a, a, a, a, a, a \}$ $\int d\phi$, a \int $\int \int \frac{dx}{dx}$ lits Cayley table is a latin is a left inverse square: each row/column is nonidentify β b (cb=e) but not Theorem If every dement of a group 6 a permutation of e,c, L,c,d). a riglet inverse for b This loop is not associative Proof (Note: $x^2 = e$ = identity for every $x \in G$.) eg. $(cq)d = dd = c$ Let $x,y \in G$. Then $(xy)^2 = xyxy = \overline{c}$ c (ad) = ch $yx = \frac{1}{2}(xy + y)y = xey = xy$. Le Ju such groups, x'= x for all xEG.

Another construction of subgroups: Suppose $G \le S_n$. So G permites $[n] = \{1, 2, ..., n\}$.
The stabilizer of a point $x \in [n]$ is Stab₆(x) = $\{geG : g(x) = x\} \le G$. The symmetry group of a regular pentagon is a group G which is dihedral of order to $Eq.$ $G = \{()\$ (12345), (13524), (14253), (15452), (12)(35), (13)(45), (14)(23), (15)(24), (25)(34) } 5 verlections 5 rolations $G \subseteq S_5$ permoting $[s] = \{1, 2, 3, 4, 5\}$, the five vertices. $(x) = x$ If $g,h \in Stab_{G}(x)$ then $Stab_c (3) = \{ () , (5)(24) \}$. $(gh)(x) = g(h(x)) = g(x) = x$ If ge Stab_c (x) then $q(x) = x$ so $x = g'(g(x)) = g'(x)$ so $g' \in Shb_{g}(x)$

Communitative Diagname: Suppose 0, p E S, are conjugate via $\pi \in S_n$ $S_n = Sym[n]$, $[n] = \{1, 2, ..., n\}$

(the n point that

the n! permutations we are permuting)

of $[n]$. $ln 1 \xrightarrow{\circ} [n]$ This diagram consultes : $\pi \sigma = \rho \pi$ $\iff \pi \circ \pi^{-1} = \rho$ $[n] \xrightarrow{\rho} [n]$ \longrightarrow \rightarrow \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow $D \rightarrow E$ In GL2(R) we have many elements of order 2. $\begin{bmatrix} 1 & a \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & a \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $eg - \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$ $(a \in \mathbb{R})$ { [°0-1] } is a conjugacy class by itself.
If a ER, A= [° a] then A is diagonalizable. Look for eigenvalues and eigenvectors of A. The characteristic polynomial of A is det $(xI-A) = det\begin{bmatrix} x-1 & -a \\ 0 & x+1 \end{bmatrix} = (x+1)(x-1) = x^2-1$. The eigenvalues of A are ±1.
[x] is an eigenvector for eigenvalue 1 FF (0-1)[y]=1[x]; take [x] = [0]. $\begin{bmatrix} 1 & a \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -q_2 \\ 1 \end{bmatrix} = \begin{bmatrix} q_2 \\ -1 \end{bmatrix}$ ${n \choose q}$ is an eigenvector for eigenvalue-1 iff ${n \choose 0} {n \choose 1} {n \choose 1} = -{n \choose 1} = {-n \choose 1}$. Take ${n \choose 1} = {n \choose 1}$ A is similar (ie conjune) $M_1 \longrightarrow R_2$
 $M_2 \longrightarrow R_1$ \Rightarrow $A = MDM^7$ $A\begin{bmatrix} 1 & 4x \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -4x \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 4x \\ 0 & -1 \end{bmatrix}$ M (having the M D AM= MD \Rightarrow A= MDM⁻¹. $\mathbb{R}^2 \xrightarrow{A} \mathbb{R}^2$

