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Every cyclic group is abolian.

Not every abelian group is cyclic but every abelia group
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The unalizer of S in G is ((S) : the set all all elements of 2 commuting with every
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The proof of this is virtually identical to the proof above ; just quantify over go rather themgeG.
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,
then [(G) = 3X1 : 10 in #3

↑ I : In = nxn identity matix.

Co soEl

j

Let Ejla) ="--)l..] for itj .

/This is the elementary matrix obtained from
the identify matrix by adding an "a" in the (ij) position . )

If A= laj : Kijian] - E(GL(F)) then · (1) = Ej11) A so
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Conjugacy in groups
Two elements

g .
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are similar iff they represent the same linear transformation with respect to a different choice of basis.

In general , cone
- elements in G have the same order · Why ?aing l

-
f Y

If h= aga then h"= allgat))... Maga) = aga"g the. . Converselyto R ~RRRR = RRIR

if h= 1 then g= 1.
a times

It follows that 1h1= 19) whenever hig are conjugate in G
.

RRR

decorate udadumagataiNo ; e
.g .

in the symetry group of a square ,

6 : <R
,
RY where -

900 rotations -
C

↑4 /7 RRER he two elements of

2 reflections half-turn about the center order 4 are conjugate :
~ / T

T

R'R = (RJRR(R)
·








