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transpositions (ij) are odd permutations .

(123456789) = (19)(18)(17)(16)(15)(1*) (13) (12)

A k-cycle is a product of k-1 transpositions .

If k is even
,

this is odd ; and vice versa
.
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If a is a product of an even number

of transpositions , then is an every permultion
.
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z (yz) even permutation of the coordinate axis in RR" is an-> AnMy orientation - preserving transformation -
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10:] -s An odd permutation of the coordinate axis in IR" is

an orientation- reversing transformation .188!Iz If T : R"-> R" is a linear transformation then

det T 9
=

I it I not in entization
<O .... reverses -



A permutation xt Se can be expressed as a product of transpositions .

If I is a product of an even number of transpositions ,

then a is even
.

In S:
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--- odd
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-(213)(23)(23)(23) 4x2) (23) = (12 3) says
(123) is an even plantation .
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S = 50, 13 mod 2
= (-1) under multiplication 5 I

under addition 6 2
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# has an abelian symmetry group
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Cayley tables of groups
of order 2

(the Klein Four-group)
cy

all "look the same"

there Any two

groups
of prime orderP are isomorphic : they are cyclic of order p .


