

Transpositions (ij) are odd permutations.
(123456789) = (19)(18)(17)(16)(15)(14)(13)(12)
A k-cycle is a product of k-1 transpositions, the is are this is odd and vice versa.
A k-cycle is a product of k-i transpositions. If k is even, this is odd; and vice versa. A cycle of odd beigth is an even permitation;
even i add
If a is a product of an even number of transpositions, then a is an even permitation.
and the second second second and the second
Permitotions in S_5 : Even (i) (i) (ij) [0] $ S_5 = 20$
(iik) 30 and the start the s
$\begin{array}{c} (ijk) \\ (ijk) \\ (m) \\ 29 \end{array} \qquad $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (A_5) = 60$
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (A_5) = 60$
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (A_5) = 60$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ \end{array} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \end{pmatrix} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \\ \end{pmatrix} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \\ \\ \end{pmatrix} \\ \\ \\ \end{pmatrix} \\ \\ \\ \\ \end{pmatrix} \\ \\ \\ \\ \\$
$ \begin{array}{c} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ \end{array} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \end{pmatrix} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \\ \end{pmatrix} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ \end{array} \\ \\ \\ \end{pmatrix} \\ \\ \\ \end{pmatrix} \\ \\ \\ \\ \end{pmatrix} \\ \\ \\ \\ \\$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

A permitation $x \in S_n$ can be expressed as a product of transpositions. If x is a product of an even number of transpositions, then x is even.
If a is a product of an even humber of the for and
$\frac{1}{(13)(12)(13)(23)(23)(23)(23)(23)(23)} = (123) = (123) \frac{1}{23} \frac{1}{(123)(12)(13)(23)(23)(23)(23)(23)(23)(23)(23)(23)(2$
$S_3 \cong \langle [0 1], [0 1] \rangle \cong dikadral group of order 6an equilatoral triangle) \frac{1}{2} \frac{1}{2}$
Groups of the 2
$S_2 \cong \{0, 1\} \mod 2 \cong \langle -1 \rangle$ under multiplication $5 \qquad 1 \qquad 5 \qquad 1 \qquad 1$
$\begin{array}{c} \circ 1(1) (12) \\ (12) \\ (1) (12) \\ (12) \\ (1) \\ (12) \\$
(12) (12) () 1 1 0 -11-1 (12) (12) () has an abelian symmetry poup of order 4 which is not ayclic (ayley tables of groups of order 2 (the Klein four-group)
Contables of groups of order 2
Cayley tables of groups of order 2 (the Klein four-group) all "look the same"
Theorem Any two groups of prime orderfære isonorquic; they are cyclic of order p.
Theorem Any two groups of prime orderfære isomorphic; they are cyclic of order p.

Eq. $\mathbb{Z}_{15\mathbb{Z}} = \{0, 1, 2\}$ (under addition mod 3) is isomorphic to $A_3 = \langle (123) \rangle = \{(), (123), (132)\}$ $\downarrow 0 = 12$ $\circ \downarrow () (123) (132)$ and $\{1, w, w\}$ under multiplication, $\omega = \frac{1}{14}$ • () (123) (132) () () (123) (132) = e^{211/3} (123) (123) (132) (1)(132) (132) (1) (123)1 1 W W2 w w w We say two groups 6, H are isomorphic $(G \cong H)$ if there exists a bijection $\phi: G \longrightarrow H$ such that $\phi(x_0) = \phi(x)\phi(y)$ G = H operation $\phi: G \longrightarrow H$ such that $\phi(x_0) = \phi(x)\phi(y)$ G = H operation $f = f(x)\phi(y)$ in G in H\$(xy) \$(xy) morphism of: Zy -> Az is a bijection satisfying $\phi(x+y) = \phi(x) \circ \phi(y)$ An isomorphism $\phi: \mathbb{R} \longrightarrow (0, \infty)$, $\phi(x+y) = \phi(x)\phi(y)$ is defined by $\phi(x) = e^x$ under under $e^{x+y} = e^{x} \cdot e^{y}$. addition multiplication $(subgroup of R = (-\infty, 0) \cup (0, \infty))$ $\mathbb{R} \not\cong \mathbb{R}^{2}$ $l_n = \phi': (o, a) \longrightarrow \mathbb{R}$ since R (reels under addition) has only one element of finite order whereas R* has two elements of finite order: ±1.

is isomorphic to a b c a $\phi(0) = c + \frac{1}{c} \phi(1) = a + \frac{1}{c} \phi(1) = b + b$ $\varphi(0) = c \quad \frac{x}{c} \quad \frac{c}{b} \quad \frac{b}{b} \quad a$ 2/37 (trivial group ?13) Every group of order 1 is isomorphic to · 2/22 + 0 1 be then multiply both sides by \vec{c} on the right to get $(ac)\vec{c}' = (bc)\vec{c}'$ $a(c\vec{c}') = b(c\vec{c}')$ e e a b Every group of order 3 a = b a a b e is cyclic (isomorphic to \$\frac{2}{32}\$ under addition).

e a b c e e a b c a a e c b b b c e a c c b a e Two cases: either all a demants of G have order Theorem: There are exactly two groups of order - Re cyclic group of order 9.	2, or 6 has an eliment not of order 2. In 4 up to isomorphism: the Klein four-group and
$\frac{e}{a} = \frac{a}{b} = \frac{b}{c} + \frac{c}{c} + \frac{c}$	e e a b c d e e a b c d a a e e d b b b c d a e c c d e b a d d b a e c for b (cb=e) but not a right inverse for b c tiss a beft inverse for b (cb=e) but not a right inverse for b c tiss bop tiss bop
Proof (Note: $x^2 = e^{-identity}$ for every $x \in G$.) Let $x, y \in G$. Then $(xy)^2 = xyxy = e^{-30}$ $yx = x(xyxy) = xey = xy$. \Box $x^2 = y^2 = e^{-3x}$ In Such groups, $x' = x$	$c_{a}(c_{a})a = aa = c$ $c(ad) = cb = e$

	Sl	oe-	Se	ock	1	heore	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
• •	[n	e	ver	9	gro	np G	5, 1	for x,	$y \in G$ we have $(xy)' = y'x''$.	
• •			-	יש ל	th i	dentity	a l			
• •	Pre	¥.		yx	')(xy)	= 1	y I y	$= 1 and (\Re g) (g' \times f) = 1 \Box$	
Na	rn	ina	•	(7	'4 5 [']	\$ 7	7 -1 โ น	Ín	general.	
		J					J		,	12317
	 	e.	CA	6	c.	 			Write the rows of the Cayley table as permitations of {(), (12)(34), (13)(24), (14)(23)}, is a Klein as a subgroup of Sq.	e, a, b, c ;
· · · ·	e.	ë	a	-6-	ć	Klei for	w .	 MD	E() ((2)(34) ((3)(24) ((4)(23)), is a Klein	bour group
• •	a	a	e	C	6		, . g. o	۳÷	2() (12)(s), as have at Sa	
	6	6	. C.	le l	a	· · ·			as a company - 4	
• •	С 1	с	ط ·	-α		• • •	• •			
· ·	•	e	a .	6	C	. Cu	dic	a a a	Gives {(), (1239), (13)(24), (1932)} as a	subgroup and
	e	e	a b	b	د و	· · of	orde	group		-
• •	Ь	6	c	e	a		• •		Theorem (Cayley Representation Theorem) Every finite group Gis isomorphic to a subgroup where n = 161.	
	1C 1	С	Ł	• •	. b				(heaven (Cayley representation mechan)	
• •	• •	•		• •					Every finite group als isomorphic	
									where $n = 161$.	
	• •			• •					By the way every finite group & is also	isomorphic to
									By the way, every finite group 6 is also a group of matrices under multiplication.	
	• •	•	• •	• •			• •			
• •										

t	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	(If geG then Igl [) , and a second sec
. •	Eq. So has elements of moles 1234 These orders of elements divide (Sq = 24.
•	S5 has elements of order 1,2,3,4,5,6 (divisors of 1551 = 120).
2	Proof In the general case this follows from a later theorem, taglanglis (heorem
•	So has elements of order 1,2,3,4,5,6 (divisors of 13, [= 120). Proof In the general case this follows from a tater theorem, lagrange's Theorem. Here (et's prove the theorem in the special case that G is abadian. (we have already proved the result for cyclic groups.)
	Consider the product of all the group dements at = gigigs g. where G = Egi, gz,, g. }, g. = 1.
	Note: since & is abelian, IT is well defined; it doesn't depend on what order we list the
•	prove the product of all the group elements $\pi = g_{i}g_{i}g_{3}\cdots g_{n}$ where $G = \{g_{i},g_{2},\cdots,g_{n}\}, g_{i} = 1$. Note: since G is abelian, π is well defined; it doesn't depend on what order we list the elements $g_{i},\cdots,g_{n} \in G$. Pick $a \in G$. (So $a \in \{g_{i},\cdots,g_{n}\}$.) The elements $ag_{i}, ag_{2}, \cdots, g_{n}^{2}g_{n}$ are again all the elements of G so $\frac{1}{g_{i}g_{2}\cdots}g_{n}^{n}$
•	$ Aa\rangle aa\rangle AA\rangle aa\rangle \Xi \Pi = A aa\rangle \Xi \Pi = A aa\rangle aa\rangle aa\rangle aa\rangle aa\rangle aa\rangle aa\rangle aa\rangle aa\rangle $
•	$S_{n} = 1$ and $k = 0 $ must divide n .
•	Lagrange's Theorem If G is any finite group of order n, and H ≤ G (i.e. H is a subgroup of G) then IHI [n.
	This generalizes the previous statement: if qE & then by Lagrange's Theorem, Kg>1 [6]
eg.	This generalizes the previous statement: if $g \in G$ then by Lagrange's Theorem, $ \langle g \rangle G $ $ A_{4} = \frac{1}{2} S_{4} = 12$, $A_{4} = \hat{f}(), (123), (124), (132), (134), (142), (143), (234), (243), (12)(24), (13$
•	The symmetry group of a regular tetrahedron 1 is isomorphic to Sq.
	The rotational symmetry group of the requilar z tetrahedron (the direct isometry group, consisting of those symmetrics that preserve orientation) is isomorphic to A
	· · · · · · · · · · · · · · · · · · ·

$\begin{array}{l} A_{q} = \begin{cases} (1), (123), (124), (132), (134), (142), (143), (234), (243), ((2)(34), ((3)(24)), (14)(23)) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
(243) (12)(34) = (142) {(1, (12)(34), (13)(24), (14)(23)} is the Klein four-grap, a subgroup of A4.	•
Question: How many subgroups of Z are there containing 4? (Note: Z is an additive group.) Z = {, -3, -2, -1, 0, 1, 2, 3, 4, 5, } Z = {, -6, -4, -2, 0, 2, 4, 6, 8, } 4Z = {, -6, -4, -2, 0, 2, 4, 6, 8, } 4Z = {, -8, -4, 0, 4, 8, 12, } -4Z = {, -8, -4, 0, 4, 8, 12, } Wote: For every, cyclic group G, all subgroups of G are cyclic; they are generated by powers the of the generator of G.	est in the second secon

Eq. $G = \langle g \rangle$ where $ g = \infty$ i.e. $ G = \langle g \rangle = g = \infty$.
= $\{ \dots, g^3, g^2, g^2, 1, g, g^2, g^3, \dots \}$ with no repeats. $\langle g^{\epsilon}, g^{\prime o} \rangle$ 1 is the identity $\langle g^{\prime z} \rangle \langle g^{-q} \rangle$
1 is the identity Lat's <q2> 1-4</q2>
How many subgroups of G = <g> contain g' : MR2: <g>, <g>, <g'>.</g'></g></g></g>
$G = \{ \dots, \tilde{g}, \tilde{g}, \tilde{g}, 1, \tilde{g}, \tilde{g}$
$\langle g^2 \rangle \in \{ \dots, \tilde{g}^{\circ}, \tilde{g}^{\circ},$
$\langle g^{4} \rangle = \{ \dots, g^{8}, g^{4}, 1, g^{4}, g^{8}, g^{2}, \dots \}$ Since $g^{2} = \langle g^{6} \rangle^{2} \langle g^{6} \rangle^{1}$
$G \cong \mathbb{Z}$ multiplicative additive $\phi: \mathbb{Z} \to G$ is an isomorphism $50 \langle g^2 \rangle = \langle g^6, g^{16} \rangle$ auchie group $\phi(i) = g^i$
Gene group. I i O I i i i i i i i i i i i i i i i i
Theorem If G is a group of even order, then G has an element of order 2 (i.e. at least
Theorem If G is a group of even order, then G has an element of order 2 (i.e. at least one element of order 2). Note: G is not necessarily abelian.
Proof Pair up each group element with its inverse giving pairs {g, g'} for gEG. Note that g=g' Iff g has order 1 or 2. (g=g' \le g=1 \le g] divides z). So G is partitioned
Note that g= g the g having size 1 or 2. If G has no elements of order 2 then we have
Note that g=g Ht g was order to (J) to g=1 in grannes 2) for a light and a collection of pairs partitioned a set G of even cardinality into one subset \$13 of size 1, and a collection of pairs \$3, g'3 of size 2, a contradiction.
₹3, g'3 of size 2, a contradiction.

what we actually showed is that in a group of even order, the number of elements of order 2
what we actually showed is that in a group of even order, the number of elements of order 2 is odd. (In a group of odd order, there are no elements of order 2 although we haven't proved this yet except in the abelian case.)
Eq. Direct Products: Given groups G.H. (say unbliplicative) we form the direct product of
G and H as $G \times H = \{(g, h) : g \in G, h \in H \}$ (the cartesian product of the sets G and H) which becomes a group under coordinatewise multiplication i.e.
which becomes a group under coordinateurse multiplication 12. (g,h)(g',h') = (gg', hh')
and coordinate voise inverses i.e. $(g,h)' = (\overline{g}',h'')$
and coordinatewise inverses i.e. $(g,h)' = (\bar{g}',h'')$ and the coordinatewise identify $1 \in G \times H$ is $1 = 1_{G \times H} = (1_G, 1_H)$. or $e_{G \times H} = (e_G, e_H)$.
Eg. $\mathbb{Z}_{12\mathbb{Z}} = \{0, 1\}$ under addition and $2 + [0]{0}{1}$
$\mathbb{Z}_{211} \times \mathbb{Z}_{211} = \{(x, y) : x, y \in \mathbb{Z}_{212}\} = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$
(x, y) + (x', y') = (x+x', y+y'). The identity $0 = (0, 0)$.
This is the Klein forw-group since it has 3 elements of order 2.
Note: Many books write Z, in place of 4/2Z G×H = H×G
If G =m and H =n then G×H =mn. \$: G×H > H×G
It for the the declian then so is $G \times H$. If G and H are abelian then so is $G \times H$. In fact, the converse holds: G and H are both abelian, iff $G \times H$ is abelian. isomorphism.

$G \times H$ has a subgroup $G \times \{I_{H}\} = \{(g, I_{H}) : g \in G$ An isovorphism $G \times \{I_{H}\} \longrightarrow G$ is given	$\begin{cases} \stackrel{\sim}{=} & \mathcal{G} \\ \stackrel{\scriptstyle}{\leftarrow} & (g, I_{H}) & \longrightarrow g \end{cases}$
Likewise, GXH has a subgroup \$1, 3× H	$f \stackrel{\sim}{\simeq} H$
$(g, I_{\mu})(I_{c}, h) = (g, h) = (I_{c}, h)(g, I_{\mu})$	
\sim	
$ \begin{array}{c} G \times \{1_{\mu}\} \\ & \swarrow \\ & \swarrow \\ & \swarrow \\ & \swarrow \\ & \Pi \\$	· · · · · · · · · · · · · · · · · · ·
$\mathcal{F}_{\mathcal{F}} = \mathcal{P}_{\mathcal{F}} \times \mathcal{P}_{\mathcal{F}}$	· · · · · · · · · · · · · · · · · · ·
Eq. $\mathbb{R} = (-\infty, 0) \cup (0, \infty) \cong \mathbb{R} \times \mathbb{Z}_{2\mathbb{Z}}$ multiplicative group additive additive	
Au isonooplism of: IR* -> R × Z/2k is	······································
It's easy to see that ϕ is one-to-one and onto. We show that $\phi(ab) = \phi(a) + \phi(b)$ for all $a, b \in \mathbb{R}^*$.	$\left((\ln a , 1) \text{if } a < 0 \right)$
We argue in four cases. If 9,670 then $\phi(ab) = (lm ab , 0)$ since $ab > 0$	
$= (lu a + lu b , 0) = (lu a , 0) + (lu b , 0) = \phi(a) +$ If a>0>6 + lue ab<0 so	If a, b<0 then do>0 so
$\phi(ab) = (ln ab1, 1) = (ln a1, 0) + (ln b1, 1) = \phi(a) + \phi(b)$ Similarly if $q < 0 < b$.	$ \phi(ab) = (hu ab1, 0) = (hu a1, 1) + (hu b1, 1) $ = $\phi(a) + \phi(b)$

Every cyclic group is abalian. Not every abalian group is cyclic but every abalian group is a direct product of cyclic groups. Eq. the Kkin four-group is a direct product of two groups of order 2 i.e. $\mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{2\mathbb{Z}}$ There are five groups of order 8 up to isomorphism: $\mathbb{Z}_{18\mathbb{Z}}$ (cyclic)	
eq. the Kkin focus-group is a direct product of two groups of order 2 1.8. 422 422	
There are five groups of order 8 up to isomorphism:	
$\mathbb{Z}_{8\mathbb{Z}}$ (cyclic) $\mathbb{Z}_{8\mathbb{Z}} \times \mathbb{Z}_{4\mathbb{Z}} = \frac{2}{3}(a,b): q \in \mathbb{Z}_{2\mathbb{Z}}, b \in \mathbb{Z}_{4\mathbb{Z}}^{2\mathbb{Z}}$, $b \in \mathbb{Z}^{2\mathbb{Z}}^{2\mathbb{Z}}$, $b \in \mathbb{Z}^{2\mathbb{Z}}^{2\mathbb{Z}}^{2\mathbb{Z}}$, $b \in \mathbb{Z}^{2\mathbb{Z}}^{2Z$	
$Z_{122} \times Z_{42} = \frac{2}{3} (a, b) : a \in \mathbb{Z}_{122}, b \in \mathbb{Z}_{1422}^{3}$	
$Z_{1274} \times Z_{127} \times Z_{127} = \{(a, b, c) : a, b, c \in Z_{127}\}$ under addition	
dihedral group of order 8 ~ symmetry group of square, D4 (sometimes D8) quaternion group of order 8, Q or Q8	
quaternion group of order 8 & or ug	
$Q = \{1, -i, j, -j, k, -k\} i = j = k, j = -i$ $Q = \{1, -i, j, -j, k, -k\} i = j = k = -i$ $i = -i$	
order 2 ki=j, ik=j	
For any field F (g. $\mathbb{R}, \mathbb{C}, \mathbb{Q}$) $GL_n(F) = \xi$ invertible nxn matrices over F i.e. having entries in F . $A(so F = ff_{\overline{g}} = \xi o, 1, 2\}$ works with addition mod 3. $2+2=1=2x2$	
Also $t = \pi_3 - \{0, 1, 2\}$ works with addition mod 3. $z + z = 1 = z + z$	
$In \ f_{\tau_{q}} = \int Q_{1} _{2} \cdots _{r_{q}} G_{1}^{2} = 3.$	•
$f_p = \{0, 1, 2, \dots, p-1\} \text{ is a field whenever } p \text{ is prime.}$	
GL_ (F3) = { invertible 2x2 matrices over f3 } is a group of order 48.	
$GL_{2}(\mathbb{R}) = \{ \text{ invertible } 2x2 \text{ matrices only } \mathbb{R} \} = \{ [a, b] : a, b, c, d \in \mathbb{R}, ad-bc \neq 0 \}$	
G(n (F) = { invertible nxn matrices over F} = general linear group of degree n over F also denoted GL(n, F) in the textbook	
	0

$SL_n(F)$ is the special linear group of degree n over F ; $SL_n(F) \leq GL_n(F)$ or $SL(n,F)$ $SL_n(F) \simeq \xi_{n\times n}$ matrices over F having determinant 1 ξ .
If F= Fp = {0,1,2,, p-i} und p (field of prine order p) then we can count elements in GL (Fp) or SL (Fp). (For 2x2 matrix over F3, 33 matrices have let A = 0, 24 matrices have det A = 1, [GL (F2)] = 48.
$[GL_2(F_3)] = 48.$ The number of 2×2 matrices over $F_5 = \{0, 1, 2\}$ is $\{0, 1, 2\}$ is $\{1, 1\}$ then are invertible? We count invertible matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $ab_1c_1d \in F = F_5$ with linearly independent columns. There are $\underbrace{8}_{c}$ choices for the first column $\begin{bmatrix} c \\ c \end{bmatrix} \neq \begin{bmatrix} o \\ c \end{bmatrix}$. $9-3=6$
Having chosen the first column [c], there are 6 Chordes Tor the second commental which are not a scalar multiple of the first column. So (6L (Fz)) = 8×6 = 48.
In fact, for A & 6L2(F), F=TE, there are 29 choices with determinant 1, and 29 choices with determinant -1=2.
$ GL_n(IF_p) = (p-1)(p^n-p)(p^n-p^2) \cdots (p^n-p^n)$ no. of choices no. of choices of first adams of second column (ast column)
(GL ₂ (HF)) = (p ² -i)(p ² -p) for A ∈ GL (Fp), dot A ∈ {1,2,, pi} and there equally many matrices with each possible nonzero determinant in {1,2,, pi} so
$ SL_n(\mathbb{F}_p) = \frac{1}{p-r} GL_n(\mathbb{F}_p) . \text{We'll explain later.}$

For any group 6, the center of 6 15 Z.(G) = & all elements in a which commute with everyten
0 0 Bentrum (not Z = {ZEG: ZX = XZ for all xEGZ)
For any group 6, the center of 6 is $Z(G) = 3$ all elements in G which commute with everythin Extrum (not $Z = \{z \in G : zx = xz \text{ for all } x \in G\}$ Extrum (not $Z = \{z \in G : zx = xz \text{ for all } x \in G\}$ Extrum (not $Z = \{z \in G : zx = xz \text{ for all } x \in G\}$ if G is the symmetry group of a square (a dihedral group of order 8) then $[Z(G)] = 2$ and $Z(G)$ consists of the identity and the half-turn (180° rotation about the center). 3 = 2
and Z(G) consists of the identity and the half-turn (180 rotation about me center).
If we represent 6 using permitations on the vertices 1,2,3,4 then 4
$G = \{(), (1234), (13)(24), (1432), (12)(34), (14)(23), (13), (24)\}$
then $Z(G) = \langle (13)(24) \rangle = \{ (), (13)(24) \}$
Atternatively, G can be represented as a subgroup of 642(IR):
$G = \{ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix} \}$
$Z(G) = \left\langle \begin{bmatrix} -i & 0 \\ 0 & -i \end{bmatrix} \right\rangle = \left\{ \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}, \begin{bmatrix} -i & 0 \\ 0 & -i \end{bmatrix} \right\rangle$
In general, $Z(G) \leq G$ (a subgroup of G) Z(G) = G iff G is abolian.
For many groups, Z(G) = { 1} identity of. Z(S3) = }() } e= identity of G
Theorem If G is a group and $z \in G$, then $Z(G) \leq G$ (the center of G is a subgroup of G).
Pool Since eg = g = g = for every g \in G, e \in Z(G). If Z, Z' \in Z(G) then
(22^{\prime}) (22^{\prime}) (22^{\prime}) (22^{\prime}) (42^{\prime}) (42^{\prime})
(zz)g = z(gz) = z(gz) - (zg)z = g(zz) so $zz' \in Z(G)$. Also if $z \in Z(G)$ then for every $g \in G$ we have $zg = gz$ so $zg = \overline{z}(gz)\overline{z}' = g\overline{z}'$
so $\overline{z}' \in Z(G)$.

let SSG. The centralizer of S in G is C _c (S) = the set all all elements of G commenting 1	with every
Let $S \subseteq G$. The centralizer of S in G is $C_{G}(S) = the set all all elements of G commenting is dement of S, i.e. C_{G}(S) = \{g \in G : gs = sg \text{ for all } s \in S\}.$	
eq. $C_{\mathcal{G}}(e) = G$, $C_{\mathcal{G}}(G) = Z(G)$. If $z \in Z(G)$ then $C_{\mathcal{G}}(z) = G$.	
$I_{n} S_{4}, C_{S_{4}}((12)) = \{(1), (34), (12), (12)(34)\}$	
In general, (G(S) < G (the centrelizer of a subset of G is always a subgroup of G). The proof of this is virtually identical to be proof above; just quantify over ges rother	tan ge G.
TO G - GI (E) = invertible use matrices over F, then Z(G) = { hI : h=0 in + 3	
$I = I_n = nxn identify$	matrix.
$\begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \notin 2(GL(R))$	
$\begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$	
1 5 10 -i-fl. à] e c. (Iticie + de al motrix obtained from	
let Eijla) - [1] for i = j. (1415 is the elementary matrix by adding an a in the (i,j) position.)	
Let $E_{ij}(a) = \begin{bmatrix} i & a \end{bmatrix}$ for $i \neq j$. (This is the elementary matrix obtained from the identity matrix by adding an a in the (i,j) position.) IF $A = \begin{bmatrix} a_{ij} & i \leq i, j \leq n \end{bmatrix} \in \mathbb{Z}(GL_{k}(F))$ then $A \in \mathbb{H}^{i}(I) = E_{ij}(I)A$ so $a_{ij} = 0$. So A is Continue using other elementary matrices to show $A = \lambda I$.	diagonal.
Contrance using other elementary matrices to such al a 710 its A commute with all dementary	matrices,
Gentrand using study elementary writes to not the the $G = GL_{n}(F)$ is generated by elementary matrices so $A \in Z(G)$ if A commutes with all elementary $Z(G)$ might be trivial e.g. $Z(S_3) = F(1)$.	
(G) nugert be provad og s?	

Another construction of subgroups: Suppose $G \leq S_n$. So G permites $[n] = \{1, 2, ..., n\}$ The stabilizer of a point $x \in [n]$ is $Stab_G(x) = \{g \in G : g(x) = x\} \leq G$. The symmetry group of a regular pentagon is a group G which is dihedral of order to 2 (sometimes denoted Ds or Dio). Eq. $G = \{(), (12345), (13524), (14253), (15932), (12)(35), (13)(45), (14)(23), (15)(24), (25)(34)\}$ 5 vetlections 5 volations G = S parmiting [5] = {1,2,3,4,5} the five vertices. $()(\mathbf{x}) = \mathbf{x}$ If $g,h \in Stab_{G}(x)$ then $Stab_{c}(3) = \{(1), (15)(24)\}$ (gh)(x) = g(h(x)) = g(x) = xIf g \in Stalog(x) then g(x) = x so $x = g'(g(x)) = \ddot{g}(x)$ so $\ddot{g} \in State_{c}(x)$

Elements of order 2 in a group are called involutions. If G is abelian then the product of any two involutions in G has order ≤ 2 . If $ a = b = 2$ then $(ab)^2 = abab = a^2b^2 = 1:1 = 1$ so $ ab = 1 \text{ or } 2$. If $ab = 1$ then $b = a$; otherwise $ab \neq 1$, $(ab)^2 = i$ so ab is an $(ab)^2 = abab = a^2b^2 = 1:1 = 1$ so $ ab = 1 \text{ or } 2$. If $ab = 1$ then $b = a$; otherwise $ab \neq 1$, $(ab)^2 = i$ so ab is an involution so $\{1, a, b, ab\}$ is a Klein four-subgroup of G. Any two distinct involutions in G generate a Klein four subgroup of G. Any two distinct involutions in G generate a $(ab)^2 = abab = a^2b^2 = 1:1 = 1$ so $(ab)^2 = i \text{ or } 2$. If $ab = 1$ then $b = a$; otherwise $ab \neq 1$, $(ab)^2 = i$ so ab is an $(ab)^2 = abab = a^2b^2 = 1:1 = 1$ so $(ab)^2 = i \text{ or } 2$. If $ab = 1$ then $b = a$; otherwise $ab \neq 1$, $(ab)^2 = i$ so ab is an $(ab)^2 = abab = a^2b^2 = 1:1 = 1$ so $(ab)^2 = i \text{ or } 2$. If $ab = 1$ then $b = a$; otherwise $ab \neq 1$, $(ab)^2 = i$ so ab is an $(ab)^2 = abab = a^2b^2 = 1:1 = 1$ so $(ab)^2 = i \text{ or } 2$. If $ab = 1$ then $b = a$; $ab = a$; $ab = a^2b^2 = 1:1 = 1$ so $(ab)^2 = i \text{ or } 2$. $(ab)^2 = abab = a^2b^2 = 1:1 = 1$ so $(ab)^2 = i \text{ or } 2$. If $ab = 1$ then $b = a$; $ab = a^2b^2 = 1:1 = 1$ so $(ab)^2 = i \text{ or } 2$. $(ab)^2 = abab = a^2b^2 = 1:1 = 1$ so $(ab)^2 = i \text{ or } 2$. If $ab = 1$ then $b = a$; $ab = a^2b^2 = 1:1 = 1$ so $(ab)^2 = i \text{ or } 2$.
If G is abelian then the product of any two involutions in G well only = 2.
$(ab)^2 = abab = ab^2 = 1 = 1$ so $(ab) = 1$ or 2. If $ab = 1$ then $b = a$, otherwise attemptions in (perevote a
involution so {1, a, b, ab} is a Klein four-subgroup of G. Aay too distinct more an abdian group
How many involutions can a finite abelian group, have ?
re a losa la involutions then every involution lies in exactly 2 Klein tour-subgroup
I G now ~ Mount is have been choothe?
How many Klein tour sugroups was & new weight of
How many involutions can a finite abelian group G have? If G has k involutions then every involution lies in exactly $\frac{k-1}{2}$ Klein four-subgroup How many Klein four-subgroups does G have altogethen? How many Klein four-subgroups does G have altogethen? (ormit subgroups of the form $\langle a,b \rangle = \{1,a,b,ab\}$ where $a,b \in G$ are distinct involution h of inc. for a
k choices for a k-1 Choices for b
E-1. Choices
k (k-i) is the number of Klein four-subgroups in G.
1) A 1 7 10 in have 7 involutions 7 Klein four-subgroups,
(1,1,1) If $k=7$ then we have 7 involutions 7 Klein four-subgroups, wery involution is in 3 Klein Four-groups, every Klein four-group has 3 involutions. (-1,1) (-(-1,1)) In a direct product of three groups of order two eg. (-1) x (-1) x (-1) (1,1,-1) (1,-1,1) = $\{(x, y, z) : \pi, y, z \in (-1)\}$ (-1,1-1) $(1,-1,1) = \{(x, y, z) : \pi, y, z \in (-1)\}$
(-1 (-1)) (-(-(-1)))
In a direct product of three groups of order two eq. (+1) × (-1) × (-1)
(1-1) = $(1-1)$ = $(1-1)$
$((x, y, z) : x, y, z \in (-1))$ $((x, y, z) : (x, y, z) \in (-1)$
Containly k=1 or 3 mol 6

In general if 4,6 are distinct in plations in a group G then shat can they generate? (a,6) = {1, a, b, ab, ba, aba, bab, abab, baba, } with possible duplicates.
The symmetry group of an infinite string TTTTTT. is generated by two reflections a, b in vertical axes I, I as shown
ab is a translation (shift) one step to the right ba is a translation one step to the left.
<ab> = {,baba,ba,1, ab, abab, ababab,} is an infinite cyclic group, a subgroup of <a,b> R <a,b> itself is an infinite dihedral group.</a,b></a,b></ab>
The symmetry group of a square is a dihedral group < R, R' > generated by two reflections
$\{R^{\prime}\}=\{I, R, R^{\prime}, RR^{\prime}, RR^{\prime}R, R^{\prime}RR^{\prime}, RR^{\prime}RR^{\prime}\}$
Comments on HWZ : Recall in class we used the product π of elements in a finite abelian group. #S(a) Show that π has order ≤ 2 .
#SIQ) Show that It has order = 2. Proof If G = Eq. 92 92 is abalian of order n then IT = 9.929n = 9.929n \$0
#\$ (a) Show that it has other = Proof If $G = \{g_1, g_2,, g_n\}$ is abalian of order n then $\pi = g_1 g_2 g_n = g_1' g_2' g_n'$ so $\pi^2 = (g_1 g_2 g_n) (g_1 g_1' g_n') = e$ (the identity element of G).

Eq. G is cyclic of order 4. In unit iplicative noticition, $G = \langle g \rangle = \{1, g, g^2, g^3\}$ where $g^4 = 1$; $\pi = 1 \cdot g \cdot g^2 \cdot g^3 = g^2$ of order 2. In additive notation, $G = \mathbb{Z}/42 = \{0, 1, 2, 3\} = \langle 1 \rangle$; $\pi = 0 + 1 + 2 + 3 = 2$ of order 2. O is the identity. In S_4 , $G = \langle (12 + 34) \rangle \leq S_4$, $\pi = () \circ (1234) \circ (13)(24) \circ (1432) = (15)(24)$. of order 2.
$\lim_{\substack{X \to \infty}} \frac{\sin x}{x} = 0, \qquad \lim_{\substack{z \to \infty}} \frac{\sin z}{z} = 0 \text{is problematic in its unorthodox choice of variable } z \to \infty.$
$G = SL_2(\mathbb{F}_3) = \{2 \times 2 \text{ metrices of } \mathbb{F}_3 \text{ having determinant } 1\}$ $[G] = 24.$ $Is G \cong S_4$? G as only one involution whereas S_4 has 9 involutions. (An involution in any group element of $If G = SL_2(\mathbb{R})$ or $SL_2(\mathbb{C})$ then G has only one involution, $[o -1] = -I$. $GL_2(\mathbb{R})$ has many involutions.
Does 64 (R) have an element of order 11? Yes; in fact lg. [017 is a reflection in the y-axis.
Does $GL_2(\mathbb{R})$ have an element of order 11? Yes; in fact $SL_2(\mathbb{R})$ does: $SL_2(\mathbb{R})$ does: $\begin{bmatrix} \cos \frac{2\pi}{11} & -\sin \frac{2\pi}{11} \\ \sin \frac{2\pi}{11} & \cos \frac{2\pi}{11} \end{bmatrix} \in SL_2(\mathbb{R})$ $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta \end{bmatrix} \in GL_2(\mathbb{R})$ has determinant $-L$. Why is -L the $SL_2(\mathbb{R})$? $A^2 = \begin{bmatrix} 0 & i \end{bmatrix}$ A is a reflection $A^2 = \begin{bmatrix} 0 & i \end{bmatrix}$ A is a reflection $Infiniteley$ many involutions in $GL_2(\mathbb{R})$.)
When is the the determined only involutions in $SL_2(\mathbb{R})$? $A^2 = \begin{bmatrix} 0 & i \end{bmatrix}$ A is a reflection (Infinitely many involutions in $GL_2(\mathbb{R})$.)
· · · · · · · · · · · · · · · · · · ·

Conjugacy in groups
Two elements g, h & G are conjugate if h = aga' for some a & G. We write h~g in this case This is an equivalence relation on G:
This is an equivalence relation on G:
· For every ge 6, grg. (g= ege ^c)
• for every ge 6, grg. (g= ege) grh iff hrg. If hrg then h= aga' for some a E G
$s_0 = g = aha = (a)h(a)$
• If h~g~w then h~w. If h = aga and g = bwb then h = a(bwbja' = (ab)w(ab).
(all up partially platens in the textbody Math 2800 my videas)
Eq. in 61. (F), conjugacy is just similarity. Look in linear algebra textbook. Two matrices A BEGL are similar iff they represent the same linear transformation with respect to a different choice of her
are similar if then reprosent the same linear transformation with respect to a minimum ment
to a lingte element in G have the same order. Why?
if h= aga then h = lage) (aga) / (aga) = ag a I y ugate to ken h = ppe' = p'pip' ~ R
if h"=1 then g"=1. " times It follows that $ h = g $ whenever h, g are conjugate in G. RRR RRR' is conjugate to R It follows that $ h = g $ whenever h, g are conjugate in G. RRR RRR' is conjugate to R In the converse true? If two elements have the same order, must they be conjugate in G
it has part III = lat renever by are conjugate in G.
It follows that $ h = g $ whenever h, g use conjugate in 5. Is the converse true? If two elements have the same order, must they be conjugate in G No; e.g. in the symmetry group of a square, $G = \langle R, R' \rangle$ where $-\int R$ $\int S = R'RR' \rangle = ST RR'RR' $
Is the converse the! If how elements have C = C P P' > where I = 1 P
No; e.g. in the symmetry group of a quare, or in
$G = \{I, R, R', RR', RR'R, RR'R, RR'RR'\}$ $Z(G) = \langle RR'RR' \rangle = \{I, RR'RR'\}$
P'RR'R The two elements of
6= 2 I, R, R', RR', RR'R, P'RR', RR'RR'S, Z(G) = < RR'RR'S = 51 RR'RR'S Veflections R'R P'RR', RR'RR'S, Z(G) = < RR'RR'S = 51 RR'RR'S N'RR'R balf-two about the center order 4 are conjugate: half-two about the center order 4 are conjugate:
$\mathcal{P}^{\prime} \mathcal{R}^{\prime} = (\mathcal{R}) \mathcal{R}^{\prime} (\mathcal{R})$

	The	di	ihed	ral	gre	sup	. 0	Т – (0.00					(Λ)	9				•		• •			• •	• •		• •		• •		
•		2 ·	٦Ŷ,	· {	RR'R	(R')	1	r { rR	, R'	RR' le 2	3	د گر ا د د	₹′, ₹ 0rd	R'R	}, . 	{ RR	orde	RR}	••••		• •		•	 			· ·	· ·	· ·	• •	
•	If	Z	εí	7.6	? :	he	م :	{ ર {	} 15	° 4	C o	njing	acy	clar	s b	y i	tself.	• •	(a	Za	= 4 	9 <u>2</u>	- 1	ee -	- -		· ·	• •	• •	• •	
•	Go	nju	gac 5	y i = (n (Sn 7)(z 9), [.]	τ	- -	(1	23)(5	68	·)(4	t 7)	• •	in .	S ₈	• •	• •	• •	•	• •	· ·	•	· ·	· · ·	• •	••••	
5	~ ີ1	CG	ซ ้ =	ι 1	23) (5	6 8) (4	7)	(15	7)(24)	(13)	2) (5	-86) (4	₽) (₽ .	(2)	6.4.) · · ·	(3,	7)	•	• •	• •	•					
					r a la	517	. ,																٠				• •			• •	
	. (0)	5	· ° ·]		I. UD	τ.	= . 6	. • .												· · .						1		1			
•	[0] I~	ء ج	. ⁰ . 1 	i tu	(() 10 e	t 1 lene	= 6 inte		ie.	per	mete	stio	د (حجہ	are	<u> </u>	onjug	jate	, T	2 the	y I	lave	-1Ca		ame	cy it	che ancl	S le	fruct	ure.	2 55	
•	(0) In In	s S	۱ ۵ ۲ ۶	tu tu	(1) 10 e 71	t lune 6 8	= 6 ints 3 5	, () (ie.	per	mete der 1	stio	-5) but	are it	Can Can	mjug mot	jate be	iff 2 CT	the my'ug	te l	ave to c	-1C	sinc	àne e	its	c lu aycl	st le	fruct stru	ure.	ع 13	
•	[v] In d	S S Lifter	8, eren	tu (t.	(0 171 71	t line 6 8	= 6 int: 35) () (ie. Ros	per ore	mete ker l	stio	s) but	are - it = (- Ca Can [5	mjug mot 7) (ate be	, î€ 2 C⊽)	- the	ng l	to c	-1C	sinc	àme e	cy its	c le cycl	st	fruct stru	ure.	ع ک	
	[0] In d A	= S S IiFec fa	8, eren ster	tu (t.	(() 17(17(t lema 6 8	= 6 mts 3 5 mpu	() l te	ie. Po	per ore	mete der l				11	V.	t d	τ	the Tying	ng 1	to c	-164	sinc	e e	its	clu cycl	St	fruct stru	une.	ع کر	
	(0) In In A	= S S ITRC fee	8, eren ster	tu (t.	(() 17) 17)	t leme 6 8	= 6 int: 3 5 mpu) () (ie. To	per orc	mete ler l				11	njng mot 7)(4)(t d	τ	2 th	ng 1	to c	-12:	sinc	2	its	clex cycl	S	fruct	we.		
	(0) In d A	= S S Lifter fac	ster	tu () t.	1 To 1 7 (t lema 6 8	= 6 mts 35) () (ie To	per orc	mete ler l				11	V.	t d	τ	- the	ny 1	to c	-162	siac	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	its	cler cycl		stru	ure.		
	(o) In d A	= S S fæ	8, eren ster	t.	(() 17) 17)	t lema 6 8	= 6) () (TO TO	per ore	mete ler l				11	V.	t d	τ		en le	to c	-1C	sin c	2	ين ts			fruct	we.		
	(v) In A	= S S fee	8, eren ster	tu (1 7 1 7 1 7	t lema 6 8	= 6 mt: 3 5) (Te	TO	peri ore	mete ler l				11	V.	t d	τ	- the	te te		- 1 Ca	sin C	2	its its	clu cycl	S	fruct	we.		
	(or) In d	= S S Lifte fee	ster	t.	Cb 1 7(t ltma 2 6	= 6 unt: 3 5) ((ie. To	peri oro	ler (11	V.	t d	τ		in the second se	to c	- 1 Ca	sin c	· · · · · · · · · · · · · · · · · · ·	j.	clu cycl	S.	fruct	we.	2 <u>15</u>	
	(or) In A	S S Lifte fe	ster	tu tu tu	. (b) 20 . e	t ltma % 8	= 6 unts 3 5) ((τ. Τ.	peri oro	mete ler (11	V.	t d	τ			to c	-164	sinc.	· · · · · · · · · · · · · · · · · · ·	Ĩ.	clex cycl	s	fruct	we.		
	(or) In d	S S Lifte fæ	ster	tu tu	(b) e	t (2 8	= 6 int: 35) ((τ. Τ.	per.	ler (11	V.	t d	τ			to c	- 1 Ca	sin c			clex cycl	st le	fruct	une.		