

Orbits and Stabilizers for Group Actions Eg $G =$ symmetry group of $3\pi^2$ $G < S$ $G = \langle (1234), (13) \rangle$
 $G =$ permutes the four vertices transitively (meaning if $x, y \in \{1, 2, 3, 4\}$
 $g \in G$ such that $g(x) = y$). a dihedral group of For legal moves of a Rubik's cube, the group of all moves does not permite the 26 small cubes
(the group has three orbits of size 12, 3, 6)
A group action is transitive & there is only only one orbit $(0)(z) = 2$
A group act The stabilizer of x is stable (x) = $G_x = \{ g \in G : g(h) = x \}$ $\le G$ (a subgroup) eg in the dihedral group above, Stab₆(2)= $G_2 = \{$ all elements of 6 fixing 23 = {(), (13)}
Stab₆(1) = {(), (24)} = Stab₆(3) = < (24)} = = < (1) $= \langle (13) \rangle$ The orbit of x is $O(x) = \{g(x) : g \in G\}$ In this case there is only one orbit $\mathcal{O}(1) = \{1, 2, 3, 4\} = \mathcal{O}(2) = \mathcal{O}(3) = \mathcal{O}(4)$ Theorem If G permites $X = [n] = \{1, 2, ..., n\}$ then for every $x \in X$, $|\text{Sha}(x)| |O(x)| = |G|$.

Application to graph theory: computing the number of automorphisms of a graph. Eg. $\Gamma = \prod$ has four automorphisms. Its automorphism group is a Klein four-group 4 5 6 $G = \langle (13)(46), (14)(25)(36) \rangle = \{ (1, (13)(46), (14)(36)(36) \rangle \}$
 $G = \langle (13)(46), (13)(46), (14)(36)(36) \rangle = \{ (1, 23)(46), (13)(46), (14)(36)(36) \}$
 $G = \{ (13)(46), (14)(36)(36) \}$
 $G = \{ (14)(36), (15)(46) \}$
 $G = \{ (14)(36), (15)(46) \}$
 $G = \{ (14)(36), (15)(46) \$ -4212 is the Peterson graph How many autoncerplisaire does P have?
Aut P = { automorplisms of P} $\leq S_0$ actually S_0, S_1, \ldots, S_n Is Aut $P \cong S_{5}$? $|$ Meorem $|AutP| = 120$. Proof First enumerate orbits of $G = AutP$ on the vertex set $\{0, 1, 2, ..., 7\}$
There is only one orbit by considering the dihedral subgroup of order 10 and $10^{x/2}$ =120
(0.5)(1.8.4.7)(2.63.9), So G is transitive on vertices

 G_{o} = Stab_c(o) 4922 We show $\{1,4,5\}$ is an orbit of G_0 Clearly 1,4 are in Also 5 is in the same orbit as 1 (under Go) since $\frac{14}{3}5$ Since $\frac{14}{3}5$ is an orbit of 6_{0} , $|6_{0}| = |\frac{5}{3}|\frac{1}{6}$ (i) $|0_{0}(i)|$
= $3|6_{0,1}| = \frac{3}{4} = 5$ = $3|G_{0,1}| = 3x4=12$ Does $G_{p,1} = 5x4=12$
Does $G_{p,1} = 5x4=12$
 $G_{p,1} = 5x4=12$
 $G_{p,1} = 5x4=12$ $\begin{array}{ccc} \begin{array}{ccc} 4 & 0 & 0 & 2 & 2 & 6 & 7 & 8 & 4 \end{array} & \begin{array}{ccc} 6 & 6 & 2 & 6 & 7 & 8 & 4 \end{array} & \begin{array}{ccc} 6 & 6 & 6 & 6 \end{array} & \begin{array}{ccc} 6 & 6 & 6 & 6 \end{array} & \begin{array}{ccc} 6$ $G_{o,1,2} = \{g \in G : g(o)=o, g(i)=1, g(o)=2\}$ Stab (3)
1 E_{1,2} $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ (3 7) (4 5) (8 9) 6 $G_{0,1,2}$
(8 1 = $\begin{pmatrix} 2 & 3 & 7 \\ 3 & 1 & 1 \end{pmatrix}$ $|G_{R,1,2}| = |S/kb_{C_{Q,1,2}}(3)| |G_{G_{Q,1,2}}(3)| = 2 |G_{Q,1,2,3}| = 2x/22$

has automorplism group G= Ant I which is \mathcal{H}_{φ} In the
same way Klein fourgroup (14) (46) $5¹$ the si Proof: $21, 3, 4$ $i5$ \mathcal{C} $G_1 = \frac{5}{2}$ $\frac{5}{2}$ $\frac{6}{5}$ G). = Oli $l = 4$

In GL, (F), any two conjugate matrices have the same trace and teleminant eg in $GL_2(F)$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are not similar conjugate to the devicity is itself) $+(AB) = +(BA) = \sum_{i,j} a_{ij} b_{ji}$ If $A = MBM^{-1}$ then $AM = MB$, det $(AM) = det(MB) = det(M)det(B)$. $A = \lambda I = M(B - \lambda I) M^{-1}$ MBM - $\lambda MIM^{-1} = A - \lambda I$