
A Quick Review of Linear Algebra

Most of this handout consists of review of Math 2250 (Elementary Linear Algebra), which

is listed as a pre-requisite for this course. You should already have studied vector spaces,

matrices and linear transformations. If any of these basic notions are unfamiliar or too

abbreviated, please refer back to your linear algebra textbook (or any undergraduate text-

book introduction to the subject).

A vector space has two kinds of objects: vectors and scalars. We denote by V the

set of vectors, and by F the field of scalars. (Typically F is R, C or Q, although F can be

any field. Later we shall define precisely what is meant by a field; for now it may help to

imagine simply that F = R.) It also has two operations: vector addition, which is an

operation of the form

vector + vector = vector;

and scalar multiplication, which is an operation of the form

scalar× vector = vector.

These operations are required to satisfy the following properties, which we take as axioms:

for all u,v,w ∈ V and all a, b ∈ F , we have

(V1) u + v = v + u;

(V2) (u + v) + w = u + (v + w);

(V3) there exists −v ∈ V such that v + (−v) = 0;

(V4) 1v = v;

(V5) (a+ b)v = av + bv;

(V6) a(bv) = (ab)v;

(V7) a(u + v) = au + av.

Any set of vectors and scalars, and choice of operations of vector addition and scalar

multiplication, satisfying (v1)–(V7), is called a vector space over the field F . In

general a vector space is not required to have any kind of vector multiplication (i.e. vector×
vector = vector); any vector space with such an operation, satisfying additional properties

of the form (au)v = a(uv) and (uv)w = u(vw), is called an algebra). There is always

an operation of vector subtraction, but this is defined in terms of vector addition by

u− v = u + (−v) so it is not necessary to list this separately among our requirements.

A remark concerning notation: So far we have distinguished vectors from scalars by

writing vectors in bold face font as u, v, etc. This convention is followed by many popular
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introductory textbooks do. Other textbooks may denote vector quantities instead as ~u, ~v,

etc. or as u, v, etc. (The underline is simply the standard convention used by authors as

an instruction to the publisher to use a bold face font.) More advanced textbooks simply

denote vectors as u, v, etc., trusting that the reader will understand which quantities

are scalars and which are vectors, based on the context; or perhaps using the fact that

scalars and vectors are often denoted using opposite ends of the alphabet. Still other books

use Roman letters u, v, . . . for vectors and Greek letters α, β, . . . for scalars; and in other

textbooks this convention is reversed!

We list some examples of vector spaces. In each case we mention the dimension of the

vector space, although we have not yet formally defined dimension.

Example 1: Euclidean Spaces

Let V = R3, the set of all ordered triples of real numbers of the form (a, b, c) with a, b, c ∈ R.

In this case the scalar field is F = R. Vector addition and scalar multiplication are defined

componentwise:

(a, b, c) + (a′, b′, c′) = (a+a′, b+b′, c+c′), t(a, b, c) = (ta, tb, tc).

The zero vector is

0 = (0, 0, 0)

and additive inverses are defined componentwise as

−(a, b, c) = (−a,−b,−c).

This gives a 3-dimensional vector space known as Euclidean 3-space in which vectors

are interpreted as ‘arrows’, each with its own magnitude and direction. Vector addition

follows the usual ‘parallelogram law’; scalar multiplication by t ∈ R consists in preserving

the direction, and multiplying the magnitude of each vector by t (assuming t > 0), or

reversing the direction and multiplying the magnitude of each vector by |t| (assuming

t < 0).

All of the preceding works just as well for V = Rn and F = R, an n-dimensional

vector space known as Euclidean n-space. The most familiar cases are n = 2 or 3, where

vectors represent physical quantities such as velocity, force, acceleration, displacement, etc.

Example 2: Field extensions E ⊇ F

The set of complex numbers V = C is a 2-dimensional vector space over F = R. More

generally if F is any field and E is a field containing F as a subfield, then E is a vector

space over F . For example every field is a (one-dimensional) vector space over itself. Also
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R is a vector space over Q (of infinite dimension); also C is a vector space over Q (again

of infinite dimension).

Example 3: Fn

Generalizing the first example, let F be any field of scalars (such as R, C or Q) and let

V = Fn consisting of all n-tuples over F . This is an n-dimensional vector space over

F . For example Cn is an n-dimensional vector space over C; it may also be seen as a

2n-dimensional vector space over R.

Example 4: Polynomials

Let F be any field of scalars, and let V = F [X], the set of all polynomials in X with

coefficients in F . Then V is a vector space with the usual addition of polynomials, and

multiplication by scalars. This is an infinite-dimensional vector space over F . Examples

include R[X], C[X], Q[X], etc. The fact that polynomials have an extra operation of

polynomial multiplication, means that F [X] is more than a vector space: it is in fact an

algebra.

Example 5: Functions

Let F be any field of scalars, such as R. Let A be any set, and let V be the set of

all real-valued functions defined on A. (For example A could be R, or an interval like

[0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. Or A could be a subset of R2 or R3.) Addition of functions

is defined pointwise as

(f + g)(x) = f(x) + g(x)

for all f, g : A→ F ; x ∈ A and scalar multiplication is also defined pointwise:

(af)(x) = a(f(x))

for every scalar a ∈ F and function f : A → F . Then V is a vector space over F . If A

is an infinite set, then V is infinite-dimensional; in general the dimension of V is simply

|A|, the number of elements in the domain A. As in the previous example, the fact that

functions can be multiplied pointwise using the rule (fg)(x) = f(x)g(x) means that V is

more than just a vector space; it is an algebra.

Example 6: Continuous Functions

Modify the previous example by considering not all functions A → F , but certain nice

functions such as continuous functions. For example let V be the set of all continuous

functions of the form f : [0, 1] → R. The continuity requirement means that the graph
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of f can be drawn in a single curve without lifting one’s pencil. For example the function

shown here:

h(x) =

{
0, if 0 ≤ x < 0.5;

1, if 0.5 ≤ x ≤ 1
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is not continuous, i.e. h /∈ V . If f and g are continuous, and c ∈ F is any scalar, then the

functions f + g and cf are also continuous. This means that continuous functions form

a vector space (a subset of the space of all functions considered in the previous example,

hence a subspace.) The vector space of all continuous functions [0, 1] → R is infinite-

dimensional; and because the product of any two continuous functions is continuous, we

again have an algebra.

Example 7: Solutions of Differential Equations

This example will be accessible to students who have taken a first course in differential

equations. Let F = R and let V be the set of all differentiable functions f : R → R
such that f ′′(x) + f(x) = 0 where f ′′(x) denotes the second derivative of f(x). Then

V is a 2-dimensional vector space over R; in fact V consists of all functions of the form

a sinx+ b cosx where a, b ∈ R. The dimension indicates the number of initial conditions

needed to specify a particular solution of the differential equation; for example every

particular solution f ∈ V is uniquely specified by the two values f(0) and f ′(0); or by

the two values f(0) and f
(
π
2

)
. This is analogous to every complex number being uniquely

specified by its real part and its imaginary part; or every vector in R2 being specified by

its two coordinates.

More generally if a0, a1, . . . , an ∈ R with an 6= 0, then the solutions of

a0f(x) + a1f
′(x) + a2f

′′(x) + · · ·+ anf
(n)(x) = 0

form an n-dimensional vector space over F = R. (Here f (n) denotes the n-th derivative

of f .) This observation lies at the historical roots of the concepts of vector space and

dimension. If Rn were the only vector space of interest then we would have no need

to introduce axioms; all properties of Euclidean space would be studied merely in the

context of that one example. It was the observation that many notions of geometric

vectors apply equally well in other contexts (such as the set V of solutions of a linear

differential equation) that provided the historical motivation for developing linear algebra

as a subject. The beauty of the axiomatic approach to linear algebra is that it leads to
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a uniform description of vector spaces, allowing intuition (often learned in the context of

more geometric examples) to be readily applied to other settings (including the current

example of solutions of differential equations).

Example 8: The Trivial Vector Space

Let F be any field, and let V = {0}; so V consists of just one vector, the zero vector. We

have 0 + 0 = 0 and a0 = 0 for all a ∈ F . What’s more to say about this example? Its

dimension is in fact zero.

Subspaces

Let V be a vector space over a field F , and let U ⊆ V be any set of vectors in V . We

say that U is a subspace of V if U is also a vector space, using the usual operations

of vector addition and scalar multiplication for V . This condition is more subtle than it

looks, because it implicitly requires that

(vector in U) + (vector in U) = (vector in U)

and

(scalar in F )× (vector in U) = (vector in U).

It also implicitly requires that the zero vector of V lies in U , and that

−(vector in U) = (vector in U).

Note that in order to prove that U is a subspace of V , one does not need to verify the

various commutative, associative and distributive laws; if these hold in all of V then they

must hold in U . The main thing to check is that U has the zero vector (in particular U

is not empty), and U is closed under vector addition and scalar multiplication. (Closure

is implicitly assumed for every vector space; hence it is a requirement in particular for

subspaces.) For example the subspaces of R3 (see Example 1 above) are

(i) the trivial subspace consisting of just the origin 0 = (0, 0, 0);

(ii) lines of R3 passing through the origin;

(iii) planes of R3 passing through the origin; and

(iv) R3 itself.

The subspaces listed in (i)–(iv) have dimension 0, 1, 2, 3 respectively.

The set of continuous functions [0, 1]→ R (see Example 6) is a subspace of the space

of all functions [0, 1]→ R (Example 5).

5



The set Vn consisting of all polynomials f(X) ∈ F [X] of degree < n is an n-

dimensional subspace of F [X], and we have

{0} = V0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ · · · ⊂ F [X].

Basis, Span and Dimension

Let v1,v2, . . . ,vn be vectors in a vector space V over a field F . Any vector of the form

v = a1v1 + a2v2 + · · ·+ anvn ∈ V, where a1, a2, . . . , an ∈ F

is called a linear combination of the vectors v1,v2, . . . ,vn . Note that there is no

restriction on the number n of terms, but it must be finite. Let S ⊆ V be an arbitrary

set of vectors. The span of S, denoted 〈S〉, is the set of all linear combinations of vectors

v1, v2, . . . , vn ∈ S. It is easy to see that 〈S〉 is a subspace of V ; and we say that this subspace

is spanned by S; in other words, S spans the subspace 〈S〉. (Note: We first introduced

‘span’ as a noun, then used it as a verb.) For example if Vn ⊂ F [X] is the subspace

consisting of all polynomials of degree less than n, then Vn = 〈1, X,X2, . . . , Xn−1〉. Also

if S = {1, X,X2, 1+X, 1+X2} then 〈S〉 = V3; but in this case S contains ‘redundant’

polynomials which do not contribute anything to 〈S〉. In this case we say that S is linearly

dependent. In general a subset S ⊆ V is linearly dependent if one of its elements can

be expressed as a linear combination of other elements in S. Such ‘redundant’ elements

can be deleted without changing 〈S〉. In the case of S = {1, X,X2, 1+X, 1+X2} we may

delete 1+X and 1+X2, leaving 1, X,X2 as a set of polynomials spanning V3. Alternatively

we may delete X and X2, leaving 1, 1+X, 1+X2 as a set of three polynomials spanning

V3. It is a fact that any set of vectors spanning V3 has at least three members; and that

if it has more than three members, it is linearly dependent.

If S ⊆ V is not linearly dependent, we say it is linearly independent. For example

the set {1, 1+X, 1+X2} is linearly independent. A subset B ⊂ V is a basis if it is

linearly independent, and it spans V . For example {1, X,X2} is a basis for V3. So is

{1, 1+X, 1+X2}. There are many choices of basis for V3, but every basis for V3 has 3

members. This is what it means to say that V3 has dimension 3. We state,without proof,

some facts which are proved in any standard book on linear algebra.

Let V be any vector space. Then V has a basis. If S is any set which spans V (such

as V itself) then S contains a basis (i.e. there exists a subset B ⊆ V which is a basis for

V . We may obtain B from S by repeatedly deleting any ‘redundant’ vectors. Conversely,

suppose S ⊂ V is any linearly independent subset. Then there exists a basis for V which

contains S, i.e. there exists a basis B for V such that B ⊇ S. We may obtain B from S

by repeatedly adding vectors which are not in the span of the previously chosen vectors.
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The vector space V typically has many choices of basis, but any two bases for V (‘bases’

is the plural of ‘basis’) have the same number of members. The number of vectors in any

basis for V is the dimension of V .

One may equally well define a basis by saying: B is a basis of V iff every vector in V

can be written as a unique linear combination of elements of B. Thus for example {1, X}
fails to be a basis for V3 since there are polynomials f(X) ∈ V3, such as X2, that cannot

be written as linear combinations of 1 and X. Also the set S = {1, X,X2, 1+X, 1+X2}
fails to be a basis since there are polynomials f(X) ∈ V3 which expressible in more than

one way as linear combinations of S; for example f(X) = 2−X can be written in at least

two different ways in terms of S as

f(X) = 2(1) + (−1)X = 1(1) + (−3)X + 1(1+X).

The fact that B = {1, X,X2} is a basis for V3 follows from the fact that every f(X) ∈ V3
is expressible in the form f(X) = a·1 + bX + cX2 for unique values of a, b, c ∈ F . The

fact that B′ = {1, 1+X, 1+X2} is also a basis for V3 means that every f(X) ∈ V3 can also

be written in the form f(X) = α·1 +β(1+X) + γ(1+X2) for unique values of α, β, γ ∈ F ;

indeed

a+ bX + cX2 = α+ β(1+X) + γ(1+X2)

has as its unique solution α = a−b−c, β = b, γ = c.

Linear Transformations

Let V and W be vector spaces over the same field F . A function T : V → W is called

linear if T (au + bv) = aT (u) + bT (v) for all a, b ∈ F and all u,v ∈ V . Moreover such

functions are called linear transformations.

For example let V be the vector space over F = R consisting of all continuous functions

f : [0, 1]→ R. Let W = R3 and define T : V →W by T (f) = (f(0), f(1), f(2)). We have

T (af + bg) = (af(0)+bg(0), af(1)+bg(1), af(2)+bg(2))

= a(f(0), f(1), f(2)) + b(g(0), g(1), g(2))

= aT (f) + bT (g)

so T is linear.

As another example consider the derivative operator D : F [X] → F [X] defined by:

D(f(X) = f ′(X), the usual derivative of f(X). The linearity of D is clear from

D(af(X) + bg(X)) = d
dX

(
af(X) + bg(X)

)
= af ′(X) + bg′(X)

= aD(f(X)) + bD(g(X)).
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Matrices

An m× n matrix over a field F is a rectangular array of scalars in F of the form

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 .
Note that aij ∈ F denotes the entry in the i-th row (i = 1, 2, . . . ,m) and the j-th column

(j = 1, 2, . . . , n). Given also an n× p matrix over F of the form

B =


b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
...

bn1 bn2 · · · bnp


then the matrix product

AB =


c11 c12 · · · c1p
c21 c22 · · · c2p
...

...
...

cm1 cm2 · · · cmp


is the m× p matrix with entries defined by

cij = ai1b1j + ai2b2j + · · ·+ ainbnj .

(Note that this is simply the dot product of the i-th row of A with the j-th column of B.)

The matrix product AB is only defined only if the number of columns of A equals the

number of rows of B. For example

[
2 −1 0
3 1 4

] 5 0
6 −3
2 −1

 =

[
4 3
29 −7

]
;

 5 0
6 −3
2 −1

[ 2 −1 0
3 1 4

]
=

 10 −5 0
3 −9 −12
1 −3 −4

 .
Evidently AB is different from BA in general, as this example shows; thus matrix multi-

plication is not commutative. Matrices can be added only if they have the same size, for

example [
0 3 −2
−6 1 11

]
+

[
2 −1 1
0 5 13

]
=

[
2 2 −1
−6 6 24

]
.

Matrix operations satisfy the laws

(AB)C = A(BC); A(B + C) = AB +AC; (A+B)C = AC +BC
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whenever these expressions are defined.

Matrices can be used to represent linear transformations on vector spaces. For example

if D : V4 → V3 is the derivative operator then

D(a+ bX + cX2 + dX3) = b+ 2cX + 3dX2

can be represented in matrix form as

 0 1 0 0
0 0 2 0
0 0 0 3



a
b
c
d

 =

 b
2c
3d

 .

Systems of Linear Equations

Matrices can also represent systems of linear equations; for example the system

2x − y = 5,

x+ 3y − 2z = −3,

x− 2y + z = 6

can be represented as

Ax = b where A =

 2 −1 0
1 3 −2
1 −2 1

 , x =

xy
z

 , b =

 5
−3
6

 .
To solve this system, note that the inverse of the matrix A is given by

A−1 =

−1 1 2
−3 2 4
−5 3 7

 ,
i.e. the product A−1A = AA−1 = I is the identity matrix:−1 1 2

−3 2 4
−5 3 7

 2 −1 0
1 3 −2
1 −2 1

 =

 2 −1 0
1 3 −2
1 −2 1

−1 1 2
−3 2 4
−5 3 7

 =

 1 0 0
0 1 0
0 0 1

 .
To solve Ax = b, multiply both sides on the left by A−1 to obtain

x = Ix = A−1Ax = A−1b =

−1 1 2
−3 2 4
−5 3 7

 5
−3
6

 =

 4
3
8

 .
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Thus the unique solution of the linear system is given by x=4, y=3, z=8. (Remark: In-

verting matrices is time-consuming! This is not the most efficient computational method

for solving large linear systems. Rather, the importance of this approach lies in its theo-

retical simplicity.)

Determinants

Let A be a square matrix, i.e. an n × n matrix for some n ≥ 1. The main diagonal of

A =
(
aij
)

consists of the entries lying on the diagonal from the upper-left to the lower-right

corner, i.e. the entries a11 , a22 , . . . , ann . We say A is diagonal if all entries not lying on

the main diagonal, are zero. We say A is upper triangular if all entries below the main

diagonal are zero. Similarly, A is lower triangular if all entries above the main diagonal

are zero. The determinant of A, denoted detA, is a scalar value satisfying the following

properties.

(D1) If A is diagonal, or upper or lower triangular, then detA equals the product of

the entries on the main diagonal.

(D2) If A′ is obtained from A by adding a multiple of one row to another, or by adding

a multiple of one column to another, then detA′ = detA.

(D3) If A′ is obtained from A by interchanging two rows, or by interchanging two

columns, then detA′ = detA.

(D4) If A′ is obtained from A by multiplying some row by a scalar c, or by multiplying

some column by a scalar c, then detA′ = cdetA.

Together these rules suffice to efficiently compute any determinant. For example if

A =

 1 a a2

1 b b2

1 c c2


10



then we compute

detA = det

 1 a a2

0 b−a b2−a2
1 c c2

 using (D2)

= det

 1 a a2

0 b−a b2−a2
0 c−a c2−a2

 using (D2)

= (b−a) det

 1 a a2

0 1 b+a
0 c−a c2−a2

 using (D4)

= (b−a)(c−a) det

 1 a a2

0 1 b+a
0 1 c+a

 using (D4)

= (b−a)(c−a) det

 1 a a2

0 1 b+a
0 0 c−b

 using (D2)

= (b−a)(c−a)(c−b) using (D1).

Determinants are also denoted using vertical bars | | as in the expression

detA =

∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣ = (b− a)(c− a)(c− b).

A matrix A is invertible (i.e. it has an inverse matrix A−1 as described above) iff detA 6= 0.

Moreover determinants satisfy the rule

det(AB) = (detA)(detB)

for any two n× n matrices A and B.

Fields

Finally, let us explain what a field is. A field is a set of numbers (called scalars) including

special elements called zero and one (i.e. 0 and 1, which are required to be distinct) and

two operations called addition and multiplication, such that for all a, b, c ∈ F the following

axioms hold:

(F1) a+ b = b+ a;

(F2) (a+ b) + c = a+ (b+ c);

(F3) a+ 0 = a;
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(F4) there exists an additive inverse −a ∈ F such that a+ (−a) = 0;

(F5) ab = ba;

(F6) (ab)c = a(bc);

(F7) 1a = a;

(F8) if a 6= 0, then there exists a multiplicative inverse a−1 ∈ F such that a−1a = 1;

(F9) a(b+ c) = ab+ ac.

The most important rule, which distinguishes fields (such as R, Q or C) from more general

rings (such as Z or R[X]) is (F8), which allows us to divide by any nonzero element

a ∈ F : we define division by b/a = a−1b. We also define subtraction in any field by

a− b = a+ (−b).
The smallest field is the binary field F2 = {0, 1} in which 1+1 = 0 (this is the integers

mod 2.) In fact for any prime p, the integers mod p forms a field Fp = {0, 1, 2, . . . , p−1}
with exactly p elements. If a ∈ Fp is nonzero, then to find its inverse a−1 ∈ Fp we note

that gcd(a, p) = 1. By the Extended Euclidean Algorithm we can find r, s ∈ Z such that

ra + sp = 1; then since p = 0 in Fp we obtain ra = 1 in Fp so r = a−1. For example to

find the inverse of 18 ∈ F61 we first perform the Extended Euclidean Algorithm over Z:

61 28 1

1 0 61
0 1 28
1 −2 5
−5 11 3
6 −13 2
−11 24 1

In Z we have −11·61 + 24·28 = 1, so in F61 we have 24·28 = 1, i.e. 28−1 = 24. The field

Fp is often denoted Zp in undergraduate textbooks.

Fields are important because we can do linear algebra (in particular, solve linear equa-

tions) over any field of scalars. The usual algorithm for solving linear systems (Gaussian

elimination, which consists of performing a sequence of elementary row operations on a

matrix) requires division, and so can only proceed over a field. Fields are also important

in our previous work since the Division Algorithm requires that the coefficients in our

polynomials belong to a field.
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