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We will standard notation for the following number systems:

Z=A...,-3,-2,-1,0,1,2,3,...}, the set of all integers;

N={1,2,3,...}, the set of all natural numbers;

Q= {% ca,beZ, b# O}, the set of all rational numbers;

R, the set of real numbers, including Q but also m, v/2, etc.; intuitively, all numbers
on the ‘number line’;

C={a+1bi: a,be R} where i = \/—1, the set of all complex numbers.

Number theory is concerned primarily with properties of Z; but to fully understand Z
often requires raising our sights to other number systems, as we shall see.

Let a and b be integers. We say that a divides b, if b = ka for some integer k. In
symbols, this relationship is written as a | b. In this case we also say that a is a divisor of
b, or that b is a multiple of a. If this relation does not hold, i.e. a does not divide b, we
write a )( b. Thus, for example, we have 3 ‘ 6 and 4 X 6. The number 6 has exactly eight
divisors: 1, 2, 3, 6, —1, —2, —3 and —6.

Divisibility is an example of a relation. Another example of a relation is the ‘less
than relation’; thus, for example, 5 is less than 7, denoted 5 < 7. We distinguish between
relations and operations. Operations, such as addition (as in ‘5 4+ 7’) and multiplication
(as in ‘5 x 7’) yield numerical values; not so for a relation such as ‘5 < 7’ which is simply
a statement expressing a relationship between two numbers. Thus for any two numbers a
and b, the statement a < b is either true or false; but it does not have a numerical value.
Just so for divisibility: al|b is either true or false, depending on the values of a and b; but
it is a statement, not a number. We have not yet begun to divide (which would be an
operation).

Several properties of divisibility are well known and easily verified; for example

Proposition 1. Let a,b,c be integers.

(a) Ifa|band b|c, then a|c.

(b) If ¢ divides both a and b, then c also divides their sum a + b as well as their difference
a—b.

Proof. 1f b = ka and ¢ = ¢b for some integers k and ¢, then ¢ = (k¢)a. This proves (a).
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Next, suppose a = rc and b = sc¢; then a +b = (r 4+ s)c and a — b = (r — s)c. This
proves (b). L]

The divisors of 6 are +£1, 42, +3, 6. The divisors of 20 are +1, £2, +4, +5, 10, +20.
The numbers 6 and 20 have four common divisors are +1, 42, of which the largest is 2.
We write ged(6,20) = 2 (the greatest common divisor of 6 and 20 is 2).

Note that every integer divides 0. (For example, 5 divides 0 since 5 = 5 x 0.) The
divisors of 0 are 0,4+1,4+2,4+3,.... The common divisors of 6 and 0 are +1,+2, +3, 46,
the greatest of which is 6; thus gcd(6,0) = 6.

Similarly we can define ged(a,b) for any two integers a and b, provided that a and
b are not both zero. (The value of gcd(0,0) is undefined since the common divisors of 0
and 0 include all integers, of which there is no largest.) Two integers a and b are relatively
prime, or coprime, if ged(a,b) = 1.

An integer n > 1 is prime if its only positive divisors are 1 and n; otherwise it is

composite. The number 1 is in a class by itself, neither prime nor composite.
The Division Algorithm

Now we will start to divide! Let a and d be integers with d positive. There exist

unique integers ¢ and r such that
a=qd+r and re{0,1,2,...,d—1}.

‘Unique’ means that there is only one choice for ¢ and r satisfying these conditions. We ¢
the quotient, and r the remainder, when a is divided by d. Note that d divides a iff the
remainder r = 0.

Examples:

70 =6 x 11 4+ 4. When 70 is divided by 11, the quotient is 6 and the remainder is 4.
Clearly 11 X?O.

70 = 5 x 11+ 15. However, 15 is not in the required range {0,1,2,...,10}, so it is not

the remainder (and 5 is not the quotient).

—70 = (=7)x11+7. When —70 is divided by 11, the quotient is —7 and the remainder
is 7.



Congruences

Fix a positive integer n. Given integers a and b, we say that a is congruent to b
(modulo n) if b — a is divisible by n; in symbols, this is written a = b mod n (or if the
choice of modulus n is understood, we simply write a = b). If this relation does not hold,

i.e. a is not congruent to b, we write a # b. The following properties hold for congruences:

Proposition 2. Fix a positive integer n as the modulus in each of the following congru-
ences. For all integers a,b,c we have

(a) a = a.

(b) If a = b then b = a.

(c) Ifa=band b= c, then a = c.

(d) If a=b and ¢ = d, then a + ¢ = b+ d and ac = bd.

Properties (a)—(c) say that congruence modulo n is an equivalence relation. Property

(d) says that sums and products are well-defined for congruence classes.

Proof. Since a —a = 0 is divisible by n, (a) holds. If b—a = kn then a — b = (—k)n, which
proves (b). If b—a and ¢ — b are divisible by n then so is their sum ¢c—a = (b—a) + (¢ —b)
by Proposition 1; this proves (c).

Ifb—a=rnand d—c=sn,then (b+d)—(a+c)=(r+s)nsoa+c=b+d;also

bd —ac = (b—a)d+ (d — ¢)a = rnd + sna = (rd + sa)n

so ac = bd. L]

Let us use congruences to show that the equations 22 — 3y? = 104 has no solution
in integers. First observe that for every integer a, we have a? = 0 or 1 mod 3. (By the
Division Algorithm, we have a = 3¢ + r for some r € {0,1,2} so a =0, 1 or 2 mod 3; and
we check that a? = 0 or 1 mod 3 in each case.) It follows that 22 — 3y? = 0 or 1 mod 3

for all integers x, y; however 104 = 2 mod 3.
Modular Arithmetic

Again fix a positive integer n. The set Z, = {0,1,2,...,n — 1} is a number system
with addition and multiplication defined modulo n. Thus for example the number system
Z4 ={0,1,2,3} has addition and multiplication defined by the tables
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Additionin Z,  Multiplication in Z,

+ 0123 X 0123
00123 00000
1117230 110123
212301 20202
313012 3]10321

A statement like 243 = 1, valid in Z4, must not be taken out of context; the statement does
not hold in Z, where the operation of addition, and the numbers themselves, have a different
meaning. To be precise, we should use different symbols in Z4. This is often resolved by
denoting Z4 = {0,1,2,3} or {[0]4,[1]4,[2]4,[3]s} where the new symbols represent the
congruence classes modulo 4:
0=4Z={4k : ke Z} ={...,—8,-4,0,4,8,12,16,...};
1=4Z+1={4k+1 : keZ}={...,—7,-3,1,5,9,13,17,...};
2=A47+2={4k+2 : ke Z}={...,—6,-2,2,6,10,14,18,...};
3=47Z+3={4k+3 : keZ}={...,-5,—-1,3,7,11,15,19,...}.
These are simply the equivalence classes for the equivalence relation of congruence mod-
ulo 4. With this understanding we have
2+3={..,-6,-2,2,6,...} +1{...,-5,-1,3,7,...}
={...,—-11,-7,-3,1,5,9,13,...} = 1.
However, we soon find the extra notation tiresome, and drop them the way one outgrows
training wheels on a bicycle. At this point our perspective changes: rather than regarding
Z4 as ‘coming from 7Z’, we regard Z, as a number system that exists in its own right
alongside the other number systems Z, Q, R, etc. However one should always remember
that Z4 is not a subset of Z. The fallacy of this notion (encouraged by our abuse of the
symbols 0,1,2,3 to represent two things in different contexts) is emphasized by the fact
that the statement 243 = 5 = 1 is true in Z4, but false in Z. Similarly, Z3 is not a subset
of Z4, despite our laziness in using the same symbols 0,1,2 in these different contexts.
Note that Zs = {0,1,2} = {[0]3, [1]3, [2]3} where in this context
0=3Z={3k:keZ}y={..,-6,-3,0,3,6,9,12, ...};
1=3Z+1={3k+1:keZ}={..,-5,-2,1,4,7,10,13,...};
2=32+2={3k+2:keZ}={..,—4,-1,2,58,11,14,...}.
These are quite different from the elements of Z4 listed above; and our use of the same

symbols is pure laziness. If there is any danger of confusion, we should go back to the old

notation

lal, =nZ +a={kn+a:kecZ}={...,a—2n,a—n,a,a+n,a+2n,a+ 3n,...}.



