REVIEW: Basic Notation and Properties of the Integers

We will standard notation for the following number systems:

 $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$, the set of all *integers*;

 $\mathbb{N} = \{1, 2, 3, \ldots\}$, the set of all *natural numbers*;

 $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, \ b \neq 0 \right\}$, the set of all rational numbers;

 \mathbb{R} , the set of real numbers, including \mathbb{Q} but also π , $\sqrt{2}$, etc.; intuitively, all numbers on the 'number line';

 $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$ where $i = \sqrt{-1}$, the set of all *complex numbers*.

Number theory is concerned primarily with properties of \mathbb{Z} ; but to fully understand \mathbb{Z} often requires raising our sights to other number systems, as we shall see.

Let a and b be integers. We say that a divides b, if b = ka for some integer k. In symbols, this relationship is written as $a \mid b$. In this case we also say that a is a divisor of b, or that b is a multiple of a. If this relation does not hold, i.e. a does not divide b, we write $a \nmid b$. Thus, for example, we have $3 \mid 6$ and $4 \nmid 6$. The number 6 has exactly eight divisors: 1, 2, 3, 6, -1, -2, -3 and -6.

Divisibility is an example of a relation. Another example of a relation is the 'less than relation'; thus, for example, 5 is less than 7, denoted 5 < 7. We distinguish between relations and operations. Operations, such as addition (as in '5 + 7') and multiplication (as in '5 × 7') yield numerical values; not so for a relation such as '5 < 7' which is simply a statement expressing a relationship between two numbers. Thus for any two numbers a and b, the statement a < b is either true or false; but it does not have a numerical value. Just so for divisibility: a|b is either true or false, depending on the values of a and b; but it is a statement, not a number. We have not yet begun to divide (which would be an operation).

Several properties of divisibility are well known and easily verified; for example

Proposition 1. Let a, b, c be integers.

- (a) If $a \mid b$ and $b \mid c$, then $a \mid c$.
- (b) If c divides both a and b, then c also divides their sum a + b as well as their difference a b.

Proof. If b = ka and $c = \ell b$ for some integers k and ℓ , then $c = (k\ell)a$. This proves (a).

Next, suppose a = rc and b = sc; then a + b = (r + s)c and a - b = (r - s)c. This proves (b).

The divisors of 6 are $\pm 1, \pm 2, \pm 3, \pm 6$. The divisors of 20 are $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$. The numbers 6 and 20 have four *common divisors* are $\pm 1, \pm 2$, of which the largest is 2. We write gcd(6, 20) = 2 (the *greatest common divisor* of 6 and 20 is 2).

Note that every integer divides 0. (For example, 5 divides 0 since $5 = 5 \times 0$.) The divisors of 0 are $0, \pm 1, \pm 2, \pm 3, \ldots$ The common divisors of 6 and 0 are $\pm 1, \pm 2, \pm 3, \pm 6$, the greatest of which is 6; thus gcd(6,0) = 6.

Similarly we can define gcd(a, b) for any two integers a and b, provided that a and b are not both zero. (The value of gcd(0, 0) is undefined since the common divisors of 0 and 0 include all integers, of which there is no largest.) Two integers a and b are relatively prime, or coprime, if gcd(a, b) = 1.

An integer n > 1 is *prime* if its only positive divisors are 1 and n; otherwise it is *composite*. The number 1 is in a class by itself, neither prime nor composite.

The Division Algorithm

Now we will start to divide! Let a and d be integers with d positive. There exist unique integers q and r such that

$$a = qd + r$$
 and $r \in \{0, 1, 2, \dots, d - 1\}.$

'Unique' means that there is only one choice for q and r satisfying these conditions. We q the quotient, and r the remainder, when a is divided by d. Note that d divides a iff the remainder r = 0.

Examples:

 $70 = 6 \times 11 + 4$. When 70 is divided by 11, the quotient is 6 and the remainder is 4. Clearly 11 $\not|$ 70.

 $70 = 5 \times 11 + 15$. However, 15 is not in the required range $\{0, 1, 2, \dots, 10\}$, so it is not the remainder (and 5 is not the quotient).

 $-70 = (-7) \times 11 + 7$. When -70 is divided by 11, the quotient is -7 and the remainder is 7.

Congruences

Fix a positive integer n. Given integers a and b, we say that a is congruent to b (modulo n) if b-a is divisible by n; in symbols, this is written $a \equiv b \mod n$ (or if the choice of modulus n is understood, we simply write $a \equiv b$). If this relation does not hold, i.e. a is not congruent to b, we write $a \not\equiv b$. The following properties hold for congruences:

Proposition 2. Fix a positive integer n as the modulus in each of the following congruences. For all integers a, b, c we have

- (a) $a \equiv a$.
- (b) If $a \equiv b$ then $b \equiv a$.
- (c) If $a \equiv b$ and $b \equiv c$, then $a \equiv c$.
- (d) If $a \equiv b$ and $c \equiv d$, then $a + c \equiv b + d$ and $ac \equiv bd$.

Properties (a)–(c) say that congruence modulo n is an equivalence relation. Property (d) says that sums and products are well-defined for congruence classes.

Proof. Since a - a = 0 is divisible by n, (a) holds. If b - a = kn then a - b = (-k)n, which proves (b). If b - a and c - b are divisible by n then so is their sum c - a = (b - a) + (c - b) by Proposition 1; this proves (c).

If
$$b-a=rn$$
 and $d-c=sn$, then $(b+d)-(a+c)=(r+s)n$ so $a+c\equiv b+d$; also

$$bd - ac = (b - a)d + (d - c)a = rnd + sna = (rd + sa)n$$

so $ac \equiv bd$.

Let us use congruences to show that the equations $x^2 - 3y^2 = 104$ has no solution in integers. First observe that for every integer a, we have $a^2 \equiv 0$ or 1 mod 3. (By the Division Algorithm, we have a = 3q + r for some $r \in \{0, 1, 2\}$ so $a \equiv 0, 1$ or 2 mod 3; and we check that $a^2 \equiv 0$ or 1 mod 3 in each case.) It follows that $x^2 - 3y^2 \equiv 0$ or 1 mod 3 for all integers x, y; however $104 \equiv 2 \mod 3$.

Modular Arithmetic

Again fix a positive integer n. The set $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ is a number system with addition and multiplication defined modulo n. Thus for example the number system $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ has addition and multiplication defined by the tables

A statement like 2+3=1, valid in \mathbb{Z}_4 , must not be taken out of context; the statement does not hold in \mathbb{Z} , where the operation of addition, and the numbers themselves, have a different meaning. To be precise, we should use different symbols in \mathbb{Z}_4 . This is often resolved by denoting $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ or $\{[0]_4, [1]_4, [2]_4, [3]_4\}$ where the new symbols represent the congruence classes modulo 4:

$$\overline{0} = 4\mathbb{Z} = \{4k : k \in \mathbb{Z}\} = \{\dots, -8, -4, 0, 4, 8, 12, 16, \dots\};
\overline{1} = 4\mathbb{Z} + 1 = \{4k + 1 : k \in \mathbb{Z}\} = \{\dots, -7, -3, 1, 5, 9, 13, 17, \dots\};
\overline{2} = 4\mathbb{Z} + 2 = \{4k + 2 : k \in \mathbb{Z}\} = \{\dots, -6, -2, 2, 6, 10, 14, 18, \dots\};
\overline{3} = 4\mathbb{Z} + 3 = \{4k + 3 : k \in \mathbb{Z}\} = \{\dots, -5, -1, 3, 7, 11, 15, 19, \dots\}.$$

These are simply the equivalence classes for the equivalence relation of congruence modulo 4. With this understanding we have

$$\overline{2} + \overline{3} = \{\dots, -6, -2, 2, 6, \dots\} + \{\dots, -5, -1, 3, 7, \dots\}$$

= $\{\dots, -11, -7, -3, 1, 5, 9, 13, \dots\} = \overline{1}.$

However, we soon find the extra notation tiresome, and drop them the way one outgrows training wheels on a bicycle. At this point our perspective changes: rather than regarding \mathbb{Z}_4 as 'coming from \mathbb{Z} ', we regard \mathbb{Z}_4 as a number system that exists in its own right alongside the other number systems \mathbb{Z} , \mathbb{Q} , \mathbb{R} , etc. However one should always remember that \mathbb{Z}_4 is not a subset of \mathbb{Z} . The fallacy of this notion (encouraged by our abuse of the symbols 0,1,2,3 to represent two things in different contexts) is emphasized by the fact that the statement 2+3=5=1 is true in \mathbb{Z}_4 , but false in \mathbb{Z} . Similarly, \mathbb{Z}_3 is not a subset of \mathbb{Z}_4 , despite our laziness in using the same symbols $\overline{0}, \overline{1}, \overline{2}$ in these different contexts. Note that $\mathbb{Z}_3 = {\overline{0}, \overline{1}, \overline{2}} = {[0]_3, [1]_3, [2]_3}$ where in this context

$$\overline{0} = 3\mathbb{Z} = \{3k : k \in \mathbb{Z}\} = \{\dots, -6, -3, 0, 3, 6, 9, 12, \dots\};$$

$$\overline{1} = 3\mathbb{Z} + 1 = \{3k + 1 : k \in \mathbb{Z}\} = \{\dots, -5, -2, 1, 4, 7, 10, 13, \dots\};$$

$$\overline{2} = 3\mathbb{Z} + 2 = \{3k + 2 : k \in \mathbb{Z}\} = \{\dots, -4, -1, 2, 5, 8, 11, 14, \dots\}.$$

These are quite different from the elements of \mathbb{Z}_4 listed above; and our use of the same symbols is pure laziness. If there is any danger of confusion, we should go back to the old notation

$$[a]_n = n\mathbb{Z} + a = \{kn + a : k \in \mathbb{Z}\} = \{\dots, a - 2n, a - n, a, a + n, a + 2n, a + 3n, \dots\}.$$