
Mathematical Induction

The Principle of Mathematical Induction provides a means to prove infinitely many

statements all at once. The principle is logical rather than strictly mathematical, and

so our first examples with its application are chosen so as to reduce as much as possible

the amount of algebraic distractions. Consider the following infinite sequence of L-shaped

plane regions:
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etc.

Note that each successive region in this sequence is obtained from the previous by doubling

the width and the height, thereby quadrupling the area. In general we denote by Ln any

plane region of the following shape:
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2n−1

Ln

Observe that every Ln-region can be tiled using L1-tiles:
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As usual, to tile a region with a given set of tiles means to completely cover the region

using the tiles provided, without any overlapping of tiles. There is a pattern to the above

sequence of tilings: If one knows how to tile Lk using L1-tiles, then one can also tile Lk+1

by first decomposing it into four Lk-regions:
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Lk+1 :

and then tiling each Lk-region using the previously determined tiling scheme. Thus a tiling

of L2 gives a tiling of L3, which gives a tiling of L4, which gives a tiling of L5, etc. This

gives our first example of a proof by induction:

Theorem 1. For every n ≥ 1 it is possible to tile an Ln-region using L1-tiles.

Proof. The conclusion follows immediately for n = 1 since an L1-region can clearly be tiled

using a single L1-tile. Assuming that for some k ≥ 1 we know how to tile an Lk-region

using L1-tiles, then we can also tile an Lk+1-region by first decomposing it into four Lk-

regions as shown above, and then tiling each of these four regions by the known method.

By induction, it follows that for every n ≥ 1, an Ln-region can be tiled using L1-tiles.

It was not strictly necessary to switch from n to k above, but we have done so to

highlight that these variables play very different roles. In the statement of the theorem, n

is quantified universally (‘for all n . . . ’); whereas in the proof, k is quantified existentially

(‘for some k . . . ’). This is a vital distinction! If in the course of the proof we had assumed

that Lk could be tiled for every k then we would be assuming the very statement we are

trying to prove! and we would thus be guilty of circular reasoning. It is however legitimate

to assume Lk can be tiled for some k (at least we know L1 can be tiled) and to show that

as a consequence, Lk+1 can also be tiled. We are in effect saying that since L1 can be

tiled, so can L2; and since L2 can be tiled, so can L3; and since L3 can be tiled, so can

L4; etc. This is not circular reasoning; it is induction.
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Generalizing the process described above, we are in fact attempting to prove infinitely

many statements P1, P2, P3, . . .. (In our example, Pn was the statement that an Ln-region

can be tiled using L1-tiles.) In order to prove infinitely many statements, it suffices to do

two things:

(a) Prove P1. (This is called the initial case.)

(b) Prove that if Pk is true for some k, then Pk+1 is also true. (This is called the inductive

step. In this step we assume the inductive hypothesis that Pk is true, and show that

Pk+1 follows as a consequence.)

The Principle of Mathematical Induction is the fact that if one proves (a) and (b), then

as a logical consequence all of the statements P1, P2, P3, . . . must be true as a logical

consequence.

We compare mathematical induction to knocking down an infinite sequence of domi-

noes which are arranged to stand on end in such a way that each domino is in position to

knock down the next one in the sequence:

etc.

Proving the initial case amounts to knocking down the first domino. Proving the inductive

step amounts to arranging the dominoes close enough that each domino knocks down the

next one.

Note that the inductive step amounts to proving that for all k, the statement Pk

implies Pk+1 . We are using the term implies in the following technical (logical) sense.

Consider any two statements P and Q, each of which may be either true or false. (The

truth value of P is either T=TRUE or F=FALSE, and similarly for Q.) Then the

statement P→Q (read as ‘P implies Q’) is the statement that if P is true then so is Q. In

other words only four possible combinations may arise for the possible truth values of the

statements P , Q and P→Q, as listed in the rows of the following truth table:

P Q P→Q

T T T
T F F
F T T
F F T
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For example the statement ‘If n is odd then n+1 is even’ is universally true for all n. In

this case we may let P represent the hypothesis that n is odd, and let Q represent the

conclusion that n+1 is even. Sometimes P and Q are both true (e.g. for n = 3) and

sometimes they are both false (e.g. for n = 10) but in our example the statement P→Q is

always true. In the domino analogy, the statement P→Q says that P and Q are dominoes

with P standing next to Q, close enough to knock it over. It does not say that P has been

knocked over, only that if it is knocked over then Q must fall as well.

Here is an instructive example of an incorrect proof. We assert that all horses have

the same color. In order to state this in a form that is amenable to induction, we restate

this as follows: For every set of n ≥ 1 horses, all horses in the set have the same color.

In this case Pn is the statement that every set of n horses consists of horses of the same

color. Clearly P1 is true since every set consisting of one horse has only horses of a single

color. To ‘prove’ the inductive step, suppose that Pk is true for some k ≥ 1 and consider

any set of k+1 horses which we picture as follows:

By the inductive hypothesis the leftmost k horses all have the same color, and the rightmost

k horses all have the same color. Therefore all k+1 horses have the same color as the horses

in the middle, and so Pk+1 is true.

More careful reading reveals that the inductive step fails for k = 1 since in this case

there are no horses in the middle, i.e. the leftmost horse and the rightmost horse do not

overlap. This is the only flaw (but a fatal one) in the ‘proof’. What is actually true, and

in fact follows from our argument, is that the inductive step Pk→Pk+1 holds for all k ≥ 2.

This should not come as any surprise since if every pair of horses has the same color then

of course any n horses have the same color. Since the initial case is valid and the inductive

step is valid for all k ≥ 2 we may liken this situation to the following sequence of dominoes:

etc.
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in which the chain reaction breaks down due to the big gap between the first and second

domino.

Another example of a proof by induction is given by the Towers of Hanoi puzzle. This

puzzle consists of three vertical posts (call them A, B and C) and n ≥ 1 circular disks of

differing diameter, having holes in the middle so that the disks may be stacked on any of

the three posts. One rule of the game is that no disk may be stacked on top of a disk of

smaller diameter. A second rule is that only one disk may be moved at one time. At the

start of the game all disks are stacked on one post (say, post A). The object of the game

is to move all the disks to another post (say, post B). Here is a solution in the case n = 3:

Start

−→

Move the two smallest disks from A to C

−→ −→ −→ −→

Move largest disk from A to B

−→ −→

Move the two smallest disks from C to B

−→ −→ −→

You are encouraged to try this for yourself for n = 2, 3, 4, 5, . . . disks. Several applets have

been created for this purpose; one can be found at

https://www.cut-the-knot.org/recurrence/hanoi.shtml
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It is probably not clear that there is a solution for all n; but we proceed to show this. Our

proof, by induction, is suggested by the headings given above, which indicate a strategy

for solving the puzzle.

Theorem 2. For every n ≥ 1 there is a sequence of legal moves in the Towers of

Hanoi puzzle, that will move the stack of disks from one specified post to another.

Proof. The statement is clearly true for n = 1 since it takes only one move to transfer a

single disk from one post to another.

Suppose that for some k ≥ 1 there is a solution to the Towers of Hanoi puzzle with k

disks. Then given a Towers of Hanoi puzzle with k+1 disks on post A, here is a strategy

for moving all the disks to post B:

(i) Ignoring the largest disk, move the k smallest disks from A to C. By the inductive

hypothesis, there is a sequence of legal moves which accomplishes this.

(ii) Move the largest disk from A to B. This is possible in a single move since post B

is currently empty.

(iii) Again ignoring the largest disk, move the k smallest disks from C to B. Again by

the inductive hypothesis, there is a sequence of legal moves which accomplishes

this.

The result follows by induction.

The following shows that the Towers of Hanoi puzzle can be solved in 2n−1 moves. It

may in fact be shown that this is the smallest number of moves in any solution, although

we omit this. For example the solution shown above for 3 disks with 7 moves is optimal.

Theorem 3. For every n ≥ 1 the Towers of Hanoi puzzle with n disks can be solved

using at most 2n−1 moves.

Proof. This is clear for n = 1 since it takes only one move to transfer a single disk from

one post to another.

Assume that for some k ≥ 1 there exists a solution with 2k−1 moves. In order to

solve the Towers of Hanoi puzzle with k+1 disks we use the strategy outlined in the proof

of Theorem 2, which requires

(i) 2k−1 moves, then

(ii) 1 move, and finally

(iii) 2k−1 moves,
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for a total of (2k−1) + 1 + (2k−1) = 2k+1−1 moves. The result follows by induction.

Here is another example of a proof by induction, which shows that induction works

over n = 0, 1, 2, . . . just as well as over n = 1, 2, 3, . . ..

Theorem 4. For every integer n ≥ 0, the integer 7n−2n is divisible by 5.

Proof. The conclusion holds for n = 0 since 70−20 = 1 − 1 = 0 = 0·5 is clearly divisible

by 5.

Assuming 7k−2k is divisible by 5 for some k ≥ 0, then

7k+1 − 2k+1 = 2(7k − 2k) + 5·2k

where both terms on the right side are divisible by 5 (the first term 2(7k − 2k) is divisible

by 5 by the inductive hypothesis) and so their sum is divisible by 5, i.e. 5
∣∣ 7k+1−2k+1.

The result follows by induction.

Here is another example. This time we use induction to prove an inequality. Although

a direct proof is available (one may express the finite sum in closed form since it is just

a finite geometric series) we use this instead to provide another example of a proof by

induction.

Theorem 5. For every integer n ≥ 0 we have 1 + 1
2 + 1

4 + 1
8 + · · ·+ 1

2n < 2.

Proof. For n = 0 there is only one term on the left side and the statement reduces to 1 < 2

which is trivially true.

Assuming that for some k ≥ 0 we have 1 + 1
2 + 1

4 + 1
8 + · · ·+ 1

2k
< 2, then

1 + 1
2 + 1

4 + 1
8 + · · ·+ 1

2k+1 = 1 + 1
2

(
1 + 1

2 + 1
4 + 1

8 + · · ·+ 1
2k

)
< 1 + 1

2

(
2
)

= 2.

The result follows by induction.

It is interesting to observe that in trying to prove the latter result by induction, one’s

first attempt is typically to start with the inductive hypothesis

1 + 1
2 + 1

4 + 1
8 + · · ·+ 1

2k
< 2
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and then to add 1
2k+1 to both sides. However this yields only

1 + 1
2 + 1

4 + 1
8 + · · ·+ 1

2k
+ 1

2k+1 < 2+ 1
2k+1

which is not strong enough! (The right hand side is larger than 2.) The proof we have

given, rather, starts with the inductive hypothesis and then divides both sides by 2 to

obtain
1
2 + 1

4 + 1
8 + · · ·+ 1

2k+1 < 1

and then adding 1 to both sides gives the desired conclusion.

The following example is the most popular example in textbook treatments of induc-

tion and it is almost obligatory to include it here. We have delayed it until now because

we find that when learning induction, students have significant trouble distinguishing the

algebraic steps involved from the logical steps, and so it less effective as a first example

of an inductive proof. Again a direct proof (without induction) is not hard to find, but

instead we use this as an example of a proof by induction.

Theorem 6. For every n ≥ 1 we have 1 + 2 + 3 + · · ·+ n = n(n+1)
2 .

Proof. The conclusion clearly holds for n = 1 since 1 = 1(1+1)
2 .

Assuming that for some k we have 1 + 2 + 3 + · · ·+ k = k(k+1)
2 then

1 + 2 + 3 + · · ·+ k + (k+1) = k(k+1)
2 + (k+1)

= (k + 1)
(
k
2 + 1

)
= (k+1)(k+2)

2 .

The result follows by induction.

We trust that the reader has observed that if one replaces n by k+1 in the conclusion

of Theorem 6, the resulting statement is in fact

1 + 2 + 3 + · · ·+ k + (k+1) = (k+1)(k+2)
2

which appears in our proof.

As another example of an invalid proof, consider the following attempt to prove the

statement of Theorem 6:

Since 1 = 1(1+1)
2 , the conclusion obviously holds for n = 1.

Assuming the conclusion holds for n = k, i.e. assuming

1 + 2 + 3 + · · ·+ k = k(k+1)
2 ,
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then replacing k by k+1 in the latter expression yields

1 + 2 + 3 + · · ·+ (k+1) = (k+1)(k+2)
2

which is what we were required to prove. So the result of the
theorem follows by induction.

The fallacy here is either blatantly obvious, or rather subtle, depending on whether you

really understand yet how induction works. (Do you?) The person writing this proof

has written the inductive hypothesis Pk and then simply replaced k by k+1 to give the

statement Pk+1 which is what we are required to prove; but they have not proved it, only

stated it without proof. This is the single most common error in a typical student’s early

attempts to write inductive proofs.

Another variation on induction, sometimes called complete induction or strong induc-

tion, is the following. Once again, suppose we want to prove infinitely many statements

P1, P2, P3, . . .. To accomplish this, it suffices to do two things:

(a) Prove P1. (This is the initial case.)

(b) Prove that if all of the statements P1, P2, . . . , Pk are true for some k, then Pk+1 is

also true. (This is the inductive step. In this step we assume the inductive hypothesis

that Pn is true for all n ≤ k, and show that Pk+1 follows as a consequence.)

Once again it should be clear why this works: We prove P1 in the initial case. Since P1 is

true, P2 follows by the inductive step. Then since both P1 and P2 are true, P3 follows by

the inductive step, etc. Exploiting the analogy with dominoes yet again, we may compare

complete induction to a chain of dominoes lined up so close together that each domino is

knocked over not merely by the previous domino, but by the full weight of all preceding

dominoes in the chain:

etc.

Not every sequence of true statements can be proved by induction. Sometimes this stronger

form of induction succeeds where the previous does not.
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