

Solutions to HW3 December, 2023

1. (a) $G = \{ \iota, \sigma, \tau, \sigma\tau, \tau\sigma, \sigma\tau\sigma \}$ where

$$
\iota(x) = x; \quad \sigma(x) = \frac{1}{x}; \quad \tau(x) = 1 - x; \quad (\sigma \tau)(x) = \frac{1}{1 - x};
$$

$$
(\tau \sigma)(x) = 1 - \frac{1}{x}; \quad (\sigma \tau \sigma)(x) = (\tau \sigma \tau)(x) = \frac{x}{x - 1}.
$$

- (b) $|G| = 6$
- (c) G has one element of order 1 (the identity, ι); three elements of order 2 (σ , τ , $\sigma\tau\sigma$) and two elements of order 3 ($\sigma\tau$ and $\tau\sigma$).
- (d) An explicit isomorphism $G \cong S_3$ is shown by Cayley tables:

Alternatively, G permutes $\{0, 1, \infty\}$ inducing all six permutations of this set as

$$
\iota = (); \quad \sigma = (0, \infty); \quad \tau = (0, 1); \quad \sigma\tau = (0, 1, \infty);
$$

$$
\tau\sigma = (0, \infty, 1); \quad \sigma\tau\sigma = \tau\sigma\tau = (1, \infty)
$$

and so relabeling the three points $0, 1, \infty$ as $1, 2, 3$ (respectively) gives the isomorphism $G \cong S_3$ exhibited above.

- 2. (a) $\gamma = \alpha \beta^{-1} = \alpha \beta^3$
	- (b) $|G| = 120$ as found by Maple.
	- (c) G has one element of order 1; 25 elements of order 2; 20 elements of order 3; 30 elements of order 4; 24 elements of order 5; and 20 elements of order 6, as found by counting elements of G as listed by Maple.
	- (d) G contains 60 even permutations and 60 odd permutations, again found by counting elements of G as listed by Maple.
	- (e) The characteristics of G listed above agree with those of S_5 , so it is natural to conjecture that $G \cong S_5$.
	- (f) The group $SL_2(\mathbb{F}_5)$ has order 120 but is not isomorphic to G (since $SL_2(\mathbb{F}_5)$ has a center of order 2 whereas G has trivial center). A third group of order 120, not isomorphic to either $SL_2(\mathbb{F}_5)$, is the direct product $A_5 \times C_2$ where C_2 is cyclic of

order 2. The latter group $A_5 \times C_2$ also has a center of order 2; and it is isomorphic to the symmetry group of a regular dodecahedron (or the regular icosahedron).

- 3. (a) $|G| = 480$ since in choosing an element $\begin{bmatrix} a \\ c \end{bmatrix}$ c b $\left[\begin{smallmatrix}b\ d\end{smallmatrix}\right] \in G$, there are $5^2 - 1 = 24$ choices for the first column $\binom{a}{c}$ $_{c}^{a}$) (any nonzero vector), and then $5^{2} - 5 = 20$ choices for the second column $\binom{b}{d}$ $\binom{b}{d}$ (any vector not a scalar multiple of the first column); thus $24.20 = 480$ elements of G in all.
	- (b) $Z(G) = \left\{ \left(\begin{matrix} a \\ 0 \end{matrix} \right)$ 0 $a(a)$: $0 \neq a \in \mathbb{F}_5$ is a cyclic subgroup of order 4 generated by $\binom{2}{0}$ 0 0 $\binom{0}{2}$.
	- (c) In the natural action of G on the two-dimensional vector space \mathbb{F}_5^2 , the stabilizer of the zero vector $\mathbf{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\binom{0}{0}$ is $G_0 = G$.
	- (d) $C_G(g) = \left\{ \left(\begin{matrix} a \\ c \end{matrix} \right) \right\}$ 0 a_a^0 : $a, c \in \mathbb{F}_5$, $a \neq 0$, of order $|C_G(g)| = 20$.
	- (e) Conjugates of q in G must have trace 2 and determinant 1; and of course we must exclude the identity matrix. There are only 24 such elements in G , namely $\binom{1}{2}$ c 0 $\binom{0}{1}, \ \binom{1}{0}$ 0 c $\binom{c}{1}, \ \binom{2}{c}$ c $\begin{pmatrix} -\frac{1}{c} \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ c \end{pmatrix}$ c $\binom{-\frac{1}{c}}{2}, \binom{3}{c}$ c $\frac{1}{4}$, $\left(\frac{4}{c}\right)$ c $(\frac{1}{3})$ where $0 \neq c \in \mathbb{F}_5$. Since we require $[G: C_G(g)] = \frac{480}{20} = 24$ conjugates, these must in fact be all the conjugates of g in G.
- 4. (a) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ c b $\left[\begin{smallmatrix} b \\ d \end{smallmatrix}\right]$ and $B = \left[\begin{smallmatrix} r \\ s \end{smallmatrix}\right]$ s t $\left[\begin{array}{c} t \\ u \end{array}\right]$ in G; then

$$
f_A(f_B(x)) = \frac{a(\frac{rx+s}{tx+u}) + b}{c(\frac{rx+s}{tx+u}) + d} = \frac{a(rx+s) + b(tx+u)}{c(rx+s) + d(tx+u)} = \frac{(ar+bt)x + (as+bu)}{(cr+dt)x + (cs+du)} = f_{AB}(x)
$$

since

$$
AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} ar+bt & as+bu \\ cr+dt & cs+du \end{bmatrix}.
$$

- (b) Since the map $GL_2(\mathbb{F}_5) \to PGL_2(\mathbb{F}_5)$ is surjective and 4-to-1, $|PGL_2(\mathbb{F}_5)|$ = 480 $\frac{80}{4} = 120.$
- (c) We find that $\alpha: x \mapsto 3x + 1$ and $\beta: x \mapsto \frac{x}{x+3}$, in each case by solving a system of six equations for the unkown coefficients in each fractional linear transformation; thus we may take $A = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ 0 1 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 0 $_{3}^{0}$]. (As noted in the assignment, however, A and B may be replaced by any nonzero scalar multiples thereof.)
- (d) Since $\langle \alpha, \beta \rangle = \langle f_A, f_B \rangle \leq PGL_2(\mathbb{F}_5)$ where both $PGL_2(\mathbb{F}_5)$ and the subgroup $\langle \alpha, \beta \rangle$ have order 120, equality must hold: $|PGL_2(\mathbb{F}_5)| = 120$ as claimed.

HW3 #2. I will represent the points $1,2,3,4,0,\infty$ by $1,2,3,4,5,6$ in the context of this Maple worksheet. **> with(GroupTheory): > alpha:=Perm([[5,1,4,3]]); beta:=Perm([[1,4,2,6]]);** $\alpha := (1, 4, 3, 5)$ $\beta := (1, 4, 2, 6)$ **(1) > local gamma; gamma:=Perm([[5,1,6,2,3]]);** $\gamma := (1, 6, 2, 3, 5)$ **(2)** The following product uses left-to-right composition: **> beta.beta.beta.alpha;** $(1, 6, 2, 3, 5)$ **(3) > G:=PermutationGroup(alpha,beta);** $G \coloneqq \langle (1, 4, 3, 5), (1, 4, 2, 6) \rangle$ **(4) > GroupOrder(G);** 120 **(5)** Count the number of elements of each order in *G*. You can list all elements and count manually, but I will use Maple to count for me. I could program this in Maple from first principles, but instead let me look up suitable builtin commands using 'Help'. **> E:=Elements(G);** $E = \{ (1, 1, 2, 3, 6), (1, 2, 4, 3), (1, 2, 5, 4), (1, 2, 6, 5), (1, 3, 2, 5), (1, 3, 4, 2), (1, 3, 5, 6), (1, 3, 6, 4), (1, 3, 5, 6), (1, 3, 6, 4), (1, 3, 5, 6), (1, 3, 6, 4), (1, 3, 5, 6), (1, 3, 6, 4), (1, 3, 5, 6), (1, 3, 5, 6), (1, 3, 5, 6), (1, 3, 5,$ **(6)** $(1, 4, 2, 6), (1, 4, 3, 5), (1, 4, 5, 2), (1, 4, 6, 3), (1, 5, 2, 3), (1, 5, 3, 4), (1, 5, 4, 6), (1, 5, 6, 2), (1, 6, 2, 1)$ 4), $(1, 6, 3, 2)$, $(1, 6, 4, 5)$, $(1, 6, 5, 3)$, $(2, 3, 4, 6)$, $(2, 3, 5, 4)$, $(2, 4, 5, 3)$, $(2, 4, 6, 5)$, $(2, 5, 3, 6)$, $(2, 5, 3, 6)$ $(6, 4)$, $(2, 6, 3, 5)$, $(2, 6, 4, 3)$, $(3, 4, 5, 6)$, $(3, 6, 5, 4)$, $(1, 2, 3, 4, 5)$, $(1, 2, 4, 5, 6)$, $(1, 2, 5, 6, 3)$, $(1, 2, 6, 5)$ $(1, 3, 2, 4, 6), (1, 3, 4, 6, 5), (1, 3, 5, 2, 4), (1, 3, 6, 5, 2), (1, 4, 2, 5, 3), (1, 4, 3, 6, 2), (1, 4, 5, 3, 5), (1, 4, 5, 5, 5), (1, 4, 5, 5, 5), (1, 4, 5, 5, 5), (1, 4, 5, 5, 5), (1, 4, 5, 5, 5), (1, 4, 5, 5, 5), (1, 4, 5, 5, 5), (1, 4, 5,$ $(1, 4, 6, 2, 5), (1, 5, 2, 6, 4), (1, 5, 3, 2, 6), (1, 5, 4, 3, 2), (1, 5, 6, 4, 3), (1, 6, 2, 3, 5), (1, 6, 3, 5, 4),$ $(1, 6, 4, 2, 3), (1, 6, 5, 4, 2), (2, 3, 6, 4, 5), (2, 4, 3, 5, 6), (2, 5, 4, 6, 3), (2, 6, 5, 3, 4), (1, 2, 3, 5, 6, 4),$ $(1, 2, 4, 6, 3, 5), (1, 2, 5, 3, 4, 6), (1, 2, 6, 4, 5, 3), (1, 3, 2, 6, 5, 4), (1, 3, 4, 5, 2, 6), (1, 3, 5, 4, 6, 2), (1, 3, 4, 5, 5, 6), (1, 3, 5, 4, 6, 2), (1, 3, 5, 4, 6, 2), (1, 3, 4, 5, 2, 6), (1, 3, 5, 4, 6, 2), (1, 3, 4, 5, 2, 6), (1,$ $3, 6, 2, 4, 5)$, $(1, 4, 2, 3, 6, 5)$, $(1, 4, 3, 2, 5, 6)$, $(1, 4, 5, 6, 2, 3)$, $(1, 4, 6, 5, 3, 2)$, $(1, 5, 2, 4, 3, 6)$, $(1, 5, 3, 5)$ $(1, 6, 4, 2), (1, 5, 4, 2, 6, 3), (1, 5, 6, 3, 2, 4), (1, 6, 2, 5, 4, 3), (1, 6, 3, 4, 2, 5), (1, 6, 4, 3, 5, 2), (1, 6, 5, 2, 3, 4, 2, 5), (1, 6, 4, 3, 5, 2), (1, 6, 5, 2, 3, 4, 2, 5), (1, 6, 4, 3, 5, 2), (1, 6, 5, 2, 3, 4, 2, 5), (1, 6, 4,$ 4), $(1, 2)(3, 5)$, $(1, 2)(4, 6)$, $(1, 3)(2, 6)$, $(1, 3)(4, 5)$, $(1, 4)(2, 3)$, $(1, 4)(5, 6)$, $(1, 5)(2, 4)$, $(1, 5)(3, 6)$ (6) , $(1, 6)$ $(2, 5)$, $(1, 6)$ $(3, 4)$, $(2, 3)$ $(5, 6)$, $(2, 4)$ $(3, 6)$, $(2, 5)$ $(3, 4)$, $(2, 6)$ $(4, 5)$, $(3, 5)$ $(4, 6)$, $(1, 2, 6)$ $3(4, 6, 5), (1, 2, 4)(3, 6, 5), (1, 2, 5)(3, 6, 4), (1, 2, 6)(3, 5, 4), (1, 3, 2)(4, 5, 6), (1, 3, 4)(2, 5, 6), (1, 6, 6, 6), (1, 6, 6, 6), (1, 6, 6, 6), (1, 6, 6, 6), (1, 6, 6, 6), (1, 6, 6, 6), (1, 6, 6, 6), (1, 6, 6, 6), (1, 6, 6, 6), (1, 6, 6, 6), (1, 6$ $(3, 5)$ $(2, 6, 4)$, $(1, 3, 6)$ $(2, 5, 4)$, $(1, 4, 2)$ $(3, 5, 6)$, $(1, 4, 3)$ $(2, 6, 5)$, $(1, 4, 5)$ $(2, 6, 3)$, $(1, 4, 6)$ $(2, 3, 5)$, $(1, 5, 2)$ $(3, 4, 6)$, $(1, 5, 3)$ $(2, 4, 6)$, $(1, 5, 4)$ $(2, 3, 6)$, $(1, 5, 6)$ $(2, 3, 4)$, $(1, 6, 2)$ $(3, 4, 5)$, $(1, 6, 3)$ $(2, 4, 6)$ 5), $(1, 6, 4)$ $(2, 5, 3)$, $(1, 6, 5)$ $(2, 4, 3)$, $(1, 2)$ $(3, 4)$ $(5, 6)$, $(1, 2)$ $(3, 6)$ $(4, 5)$, $(1, 3)$ $(2, 4)$ $(5, 6)$, $(1, 1)$ $3)(4, 5), (1, 6)(2, 4)(3, 5)$ **> element_orders:=[seq(PermOrder(g),g in E)];** element orders $:=$ [3, 4, 6, 3, 2, 5, 4, 3, 4, 5, 4, 2, 2, 2, 6, 2, 4, 5, 4, 3, 5, 6, 3, 6, 3, 4, 5, 6, 5, 4, 3, 4, 4, 2, 2, 4, 5, **(7)** 4, 4, 5, 4, 2, 4, 5, 2, 5, 4, 2, 4, 4, 2, 3, 5, 1, 4, 4, 3, 3, 2, 5, 4, 5, 4, 2, 2, 5, 6, 3, 6, 2, 3, 6, 4, 2, 5, 6, 5, 6, 3, 4, 3, 2, 3, 6, 5, 6, 4, 2, 6, 2, 3, 5, 4, 2, 3, 4, 3, 5, 4, 6, 2, 6, 3, 5, 6, 5, 6, 5, 2, 2, 4, 6, 4, 2, 3, 6, 2, 5, 6, 5] **> with(ListTools): Collect(element_orders);** $[1, 1], [2, 25], [3, 20], [4, 30], [5, 24], [6, 20]]$ **(8)** Verify that *G* has trivial center. **> Center(G); GroupOrder(%);** $Z(\langle (1,4,3,5), (1,4,2,6) \rangle)$ **(9)** 1