
Solutions to HW2

1. Since uw = w, the identity element must be u. The Cayley table uniquely completes

as:

Note that G is cyclic: any one of the four elements other than u generates G. For

example, the powers 1, v, v2, v3, v4 give u, v, x, w, y respectively.

2. G has one element of order 1, and 26 elements of order 3. Every nonidentity element

g ∈ G satisfies

g =

 1 a b
0 1 c
0 0 1

 for some a, b, c ∈ F3; g3 =

 1 3a 3ac+3b
0 1 3c
0 0 1

 =

 1 0 0
0 1 0
0 0 1

 .
Note that the group C3×C3×C3 (where C3 is cyclic of order 3) also has one element of

order 1, and 26 elements of order 3. This is the smallest example of two nonisomorphic

groups, having the same number of elements of each order. Strangely, I don’t see this

fact mentioned on pp.69–70 of the textbook, where Heisenberg groups are defined.

3. G has

• 1 element of order 1: the identity element I =
[
1
0

0
1

]
• 1 element of order 2: −I =

[
2
0

0
2

]
• 8 elements of order 3:

[
1
0

1
1

]
,
[
1
0

2
1

]
,
[
1
1

0
1

]
,
[
1
2

0
1

]
,
[
2
2

1
0

]
,
[
2
1

2
0

]
,
[
0
2

1
2

]
,
[
0
1

2
2

]
. Other

than I, these are all the elements of trace 2.

• 6 elements of order 4: ±
[
0
2

1
0

]
, ±
[
1
1

1
2

]
, ±
[
2
1

1
1

]
. These are all the elements of

trace 0. Together with ±I, these elements form the unique quaternionic subgroup

(isomorphic to Q8).

• 8 elements of order 6:
[
2
0

2
2

]
,
[
2
0

1
2

]
,
[
2
2

0
2

]
,
[
2
1

0
2

]
,
[
1
1

2
0

]
,
[
1
2

1
0

]
,
[
0
1

2
1

]
,
[
0
2

1
1

]
. These

are the negatives of the elements of order 3. Other than −I, these are all the

elements of trace 1.



4. If G is a finite nonabelian group of order n, we may list its elements as g1, g2, g3, . . . , gn
where g1 and g2 do not commute. Then the products g1g2g3 · · · gn and g2g1g3 . . . gn
are not the same.

5. (a) If G = {g1, g2, . . . , gn}, then π = g1g2 · · · gn = g−11 g−12 · · · g−1n and so

π2 = (g1g2 · · · gn)(g−11 g−12 · · · g−1n ) = e

after cancelling each gig
−1
i = e. (I am writing e for the identity element of G.)

In preparation for (d), let’s re-examine the product π by considering the set of invo-

lutions I = {g ∈ G : |g| = 2}. In π =
∏
g∈G g, every element of order > 2 cancels

with its inverse; and the identity does not contribute anything to the product. So

π =
∏
g∈I g is the product of the involutions. Once again, we have π2 =

∏
g∈I g

2 =∏
g∈I e = e.

(b) In a Klein four-group, the product of all elements is the identity.

(c) For cyclic groups of even order (including order 2, 4, 6, 8), π is the unique element

of order 2.

(d) As explained in class, it is clear that 〈I〉 = {e} ∪ I is a subgroup. Let K be the

collection of all Klein four-subgroups of G. Fix an involution τ ∈ I. Every Klein

four-subgroup containing τ has the form 〈τ, x〉 = {e, τ, x, τx} for some x ∈ I
different from τ . The product of the involutions in 〈τ, x〉 different from τ , is

x · τx = τ . Now let Kτ be the collection of all Klein-four subgroups containing

τ ; let’s say the number of such subgroups is N = |Kτ |. Considering the product

of all the involutions in the subgroups K ∈ Kτ , we get τN ∈ 〈τ〉. However, this

is actually the product of all involutions except for τ itself. Including τ itself in

this product, we get π = τN+1 ∈ 〈τ〉.
If G has more than one involution, then τ = e as explained before. If G

has a unique involution τ , then π = τ has order 2, also as we have explained

already. But if G has at least two involutions τ1 6= τ2, our argument shows that

π ∈ 〈τ1〉 ∩ 〈τ2〉 = {e}.

In class I showed that if the number of involutions is k = |I|; and if k > 0, then the

number of Klein four-groups containing each involution is N = k−1
2 , so k must be

odd. Also, the number of Klein four-subgroups is |K| = k(k−1)
6 , so k ≡ 1 or 3 mod 6.

Much more can be said. In fact, |〈I〉| = k+1 ∈ {1, 2, 4, 8, 16, . . .} (a power of 2). Let

us explain.

If we write 〈I〉 as an additive group rather than multiplicative, its identity should

be written as 0. In this case it is obvious (think about it) that 〈I〉 is nothing other

than a vector space over F2 = {0, 1}. Let {g1, g2, . . . , gd} be a basis for 〈I〉; then



〈I〉 = {a1g1 + a2g2 + · · · + adgd : a1, a1, . . . , ad ∈ F2} and |〈I〉| = 2d. Of course

〈I〉 ∼= Fd2 = F2×F2×· · ·×F2; the element g = a1g1 +a2g2 + · · ·+adgd is expressed as

a vector (a1, a2, . . . , ad) using coordinatewise addition with coordinates in F2 = Z/2Z.

Assuming d > 1, the sum of all the vectors in 〈I〉 is
∑
g∈〈I〉 g = 0 = (0, 0, . . . , 0) since

in each of the d coordinates, there are 2d−1 zeroes and 2d−1 ones in the sum, giving

an even number of ones, and the sum is the zero vector. This gives another proof

of #5(d).

We have discussed groups like this before, very early in the semester. Recall that

if G is a finite group in which every element has order 6 2, we proved that G is

abelian. Groups of this description are called elementary abelian 2-groups (see p.276).


