
Sets and Cardinality

Imagine an illiterate (and innumerate) shepherd check-

ing to see that all his sheep are present. He doesn’t know

how many sheep he has; he doesn’t even know names for

numbers. Instead he keeps a set of pebbles in a pouch. He

knows that there is one pebble for each sheep. To check that

all his sheep are present, he passes through the herd, slipping

one pebble from his palm back into the pouch every time he

passes a sheep. This story teaches us an important lesson

about counting: the principle of finding a one-to-one corre-

spondence between two sets (in this case a herd of sheep and

a collection of pebbles) is more basic than using names of numbers (0, 1, 2, 3, . . . ) to

establish the size of set. Having names for numbers might, of course, be useful later if the

shepherd wants to tell someone else how many sheep he has.

This insight motivates our approach to comparing sizes of sets in all cases, including

the case of infinite sets. Recall that a set is a collection of objects. To properly define

the concept of a set requires a little more care than this; but let’s not worry about such

technicalities right now. To compare the size of two sets S and T , we try to establish a

one-to-one correspondence between their elements. The first cardinal rule is:

(C1) If there is a one-to-one correspondence between elements of S and elements of

T (i.e. if there exists a bijection S → T ), then the sets S and T have the same

cardinality (i.e. the same size), denoted by |S| = |T |.

We are not yet giving a name to the cardinality of a set; we only say what it means

for two sets to have the same size. According to this definition, the set of natural numbers

N = {1, 2, 3, . . .} and the set of counting numbers N0 = {0, 1, 2, 3, . . .} have the same size;

this is because there is a one-to-one correspondence between their elements given by

N = { 1, 2, 3, 4, . . . }
l l l l

N0 = { 0, 1, 2, 3, . . . }

This might seem disturbing at first, since N is a proper subset of N0: every element

of N is an element of N0, but not conversely. This feature of infinite sets is universal, and
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may be taken as the definition of an infinite set: A set S is infinite if and only if there is

a one-to-one correspondence between S and a proper subset of S.

Be careful: there is an obvious correspondence between N and a subset of N0, which

fails to be a perfect matching:

N = { 1, 2, 3, 4, . . . }
↖↘ ↖↘ ↖↘ ↖↘

N0 = { 0, 1, 2, 3, . . . }

This might suggest that N is smaller than N0. (Not! ) Also there is a correspondence

between a subset of N and all of N0 which is not a perfect matching:

N = { 1, 2, 3, 4, . . . }
↗↙ ↗↙ ↗↙ ↗↙

N0 = { 0, 1, 2, 3, . . . }

This might suggest that on the contrary, N0 is smaller than N! Neither of these conclusions

is correct. Carefully observe that (C1) does not require that every correspondence between

S and T is a perfect matching. The fact that there is an imperfect matching, doesn’t change

the fact that there is also a perfect matching. But of course the confusion does not arise for

finite sets; and so it is not surprising that this confusion led many leading mathematicians

of the early 20th century to conclude that talk about infinite sets was balderdash.

Georg Cantor
(1845–1918)

It was Georg Cantor (1845–1918) who first dispelled this pessimistic

view by carefully defining cardinality of sets. Sadly, he was ostracized by

the mathematical mainstream of his day, and he lost his sanity. In hind-

sight, his mathematical contributions are considered among the greatest

of the 20th century. His rules for comparing the size of sets are (C1) above

(to test for equal-size sets) and (C2) below (for sets of possibly differing

size).

The set Z of all integers, and the set Q of all rational numbers, both have the same

size as N. To see that |Z| = |N|, observe the one-to-one correspondence:

N = { 1, 2, 3, 4, 5, 6, 7, . . . }
l l l l l l l

Z = { 0, 1, −1, 2, −2, 3, −3, . . . }

The set Q of all rational numbers takes a little more thought. First list all integers,

then all reduced fractions with denominator 2, then those with denominator 3, etc. row-

by-row, thus:
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We list all rationals using the snake-like path shown, to obtain a one-to-one correspondence

N = { 1, 2, 3, 4, 5, 6, 7, 8, 9, . . . }
l l l l l l l l l

Q = { 0, 1, 1
2 ,

1
3 , −

1
2 , −1, 2, 3

2 , −
1
3 , . . . }

so that all four sets N, N0, Z, Q have the same size.

A one-to-one correspondence or perfect matching between two sets S and T is really

just a function from S to T that is bijective, i.e. both one-to-one and onto. To say that

f : N→ N0 is one-to-one (i.e. injective) means that f(x1) 6= f(x2) whenever x1 6= x2. To

say that f is onto (i.e. surjective) means that for every y ∈ N0, there exists x ∈ N such

that f(x) = y. Our bijection f : N → N0 is defined by the formula f(x) = x − 1. This

function is both one-to-one and onto. Our bijection g : N → Q is not given by any easy

formula, but it is both one-to-one and onto; here g(1) = 0, g(2) = 1, g(3) = 1
2 , . . . .

Sometimes a one-to-one correspondence is expressible using a graph. Consider, for

example, the set R consisting of all real numbers, and the open interval (0, 1) = {x ∈ R :

0 < x < 1}. We have a bijection f : R → (0, 1) given explicitly by f(x) = ex

1+ex = 1
1+e−x

whose graph is shown:

Since f is an increasing continuous function whose graph has two horizontal asymptotes

y = 0 and y = 1, we may conclude that f : R→ (0, 1) is in fact bijective. Thus |R| = |(0, 1)|.
Observe that the one-to-one correspondence between x-values and y-values is given by the

graph.

It may come as a shock to find that not all infinite sets have the same size; we will

show that there is no one-to-one correspondence between R and N. Since N ⊂ R, it is
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reasonable to expect that |N| 6 |R|. (Recall that having a proper subset does not force

|N| to be smaller than |R|. We have already seen lots of examples to show the fallacy in

this reasoning.) We have already invoked the second cardinal rule:

(C2) If S ⊆ T then |S| 6 |T |. More generally, if S is in one-to-one correspondence

with a subset of T , then |S| 6 |T |.

Some remarks about notation: For two sets S and T , the statement S ⊆ T (read as ‘S is

a subset of T ’) means that every element of S is an element of T (although elements of T

are not assumed to belong to S). I will write S ⊂ T to say that S is a proper subset of T

(i.e. every element of S is an element of T , and at least one element of T is not in S). Be

careful: some books uses the symbol ‘⊂’ to mean ‘⊆’. (This confusion has an unfortunate

history. Let us hope we never see the day when ‘<’ is confused with ‘6’.)

The following result is due to Cantor.

Theorem. |N| < |R|.

Proof. Since N ⊂ R, we have |N| 6 |R|. We only need to show that |N| 6= |R|. Since the

open interval (0, 1) has the same size as R, it is enough to show that |N| 6= |(0, 1)|. Our

proof is by contradiction.

Suppose that there is a one-to-one correspondence between N and (0, 1), say

N = { 1, 2, 3, 4, 5, . . . }
l l l l l

(0, 1) = { a1, a2, a3, a4, a5, . . . }

Let us write out the decimal expansion for each ai ∈ (0, 1) as

ai = 0 . ai1 ai2 ai3 ai4 ai5 · · ·

where aij ∈ {0, 1, 2, . . . , 9}. Thus we have a perfect matching between N and (0, 1) given

by:

etc.

We will obtain a contradiction by finding a number x ∈ (0, 1) that is not in this list. Our

value of x will be described in terms of its decimal expansion

x = 0 . x1 x2 x3 x4 x5 · · ·
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where xi ∈ {0, 1, 2, . . . , 9}. To ensure that x 6= a1, simply choose the first digit x1 6= a11;

this leaves nine choices for the digit x1. To ensure that x 6= a2, simply choose the second

digit x2 6= a22. To ensure that x 6= a3, simply choose the third digit x3 6= a33. And so on.

In general, we choose the ith digit of x different from the ith digit of ai, so x 6= ai. Thus

x ∈ (0, 1) does not appear in the list {a1, a2, a3, a4, a5, . . .}, contradicting our assumption

that all elements of (0, 1) were in this list.

There is a small defect in the proof we have given, due to the fact some real numbers in

(0, 1) have two different decimal expansions; for example 1
2 is expressed in two ways as

0.500000000 . . . = 0.499999999 . . . .

This may be easily fixed: when choosing each digit xi, simply avoid 0 or 9. Since we also

want to choose xi 6= aii, this still leaves either seven or eight possible choices for xi, which

is plenty. Of course one could choose to systematically define

xi =

{
3, if aii 6= 3;

7, if aii = 3.

I previously noted that very few theorems about real numbers are proved using the

decimal expansions. Cantor’s proof, given above, is an important exception. The most

important feature of this proof is the appearance of Cantor’s diagonal trick which is a

key ingredient in many other proofs in set theory, the theory of computation, point set

topology, and mathematical logic.

Now let us consider names for numbers. What does ‘3’ mean? How do we define 3?

‘Threeness’ is an abstraction which is concretely represented by any set with 3 objects.

The set U = {red, green, blue} will do the job quite as well as any other. We can’t define

3 as ‘the number of elements in any set with 3 objects’ because such a definition would be

circular. However, if everyone understands the principle of one-to-one correspondence (at

least our poor shepherd does), then we know what |S| = |U | means (namely, the elements

of S can be matched up with those of U) and we can write |S| = 3 as a shorthand in this

case. In the same way, we would like names for the size of infinite sets. And the symbol

‘∞’ is not specific enough, since some infinite sets are larger than others. We traditionally

write |N| = ℵ0 and we variously denote |R| = c = i1 = 2ℵ0 . Here ℵ (‘Aleph’) and i
(‘Beth’) are the first two letters of the Hebrew alphabet.

There is an infinite staircase of possible cardinalities of infinite sets, with ℵ0 being the

smallest. While the set N is infinite, it is ‘just barely’ infinite—it is as small as any infinite

set can be. The set R is strictly larger. The set F consisting of all functions R→ R is even

larger than R. Whether or not there are any sets larger than N but smaller than R cannot
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be answered with the usual axioms of mathematics (the so-called ZFC axioms) and so

sometimes an additional axiom is adopted (the Continuum Hypothesis) which asserts that

there is no such set. At other times, mathematicians may choose to admit the existence

of other sets S with |N| < |S| < |R|. This issue is of very little relevance to the typical

applications of mathematics.

However, the fact that |N| < |R| is quite relevant. Every set of cardinality ℵ0 is called

countable; every set of cardinality greater than this is called uncountable. Thus N, N0, Z
and Q are countably infinite, whereas R is uncountable. The resolution of our ‘paradox’

of probabilities is that for the coin game (Scenario II), the set of possible outcomes was

only countably infinite. If we understand the set of possible temperatures (Scenario III)

as R, or at least an interval in R, then there are uncountably many possible outcomes. We

can meaningfully talk about sums of countably many values. . .we do this all the time in

Calculus II, and it is a big part of the syllabus of Math 2205. We cannot assign any meaning

to the sum of uncountably many numbers, unless most of the numbers are zero, in which

case it is really a sum of countably many numbers; and even then, it probably wouldn’t

mean what you want it to mean. In our probability example, the sum of uncountably

many zeroes still doesn’t equal 1.

It is best to think about countable sets as those sets whose elements can be enumerated

in a (possibly infinite) list. A set of the form

S = {a1, a2, a3, . . .}

is countable because of the one-to-one correspondence N ↔ S given by n ↔ an. To say

that R is uncountable means that it is to big a set to express in the form {a1, a2, a3, . . .}.
For any two sets S and T , we may apply the cardinal rules (C1) and (C2) to compare

their size: either they have the same size, or one is smaller than the other. But some choices

of sets, this may be challenging. For example, consider the set (0, 1] = {x ∈ R : 0 < x 6 1}.
Since

(0, 1) ⊂ (0, 1] ⊂ R,

we have

|(0, 1)| 6 |(0, 1]| 6 |R|.

Since |(0, 1)| = |R|, we should conclude that |(0, 1]| = |R|. But this means that there is a

perfect matching between (0, 1] and R. Can you find such a one-to-one correspondence?

It is not easy! There is however a bijection h : (0, 1]→ (0, 1) given by

h(x) =

{ 1
n+1 , if x = 1

n for some natural number n;

x, otherwise.

Thus h(1) = 1
2 , h(0.7) = 0.7, h( 1

7 ) = 1
8 , h(0) = 0, etc. Composing h with a bijection

f : (0, 1) → R as given above, gives a bijection f ◦ h : (0, 1] → R. Now how about a

bijection between [0, 1] and R? Fortunately an explicit choice of bijection is not usually

needed, and instead we freely use the following theorem of Cantor, Schröder and Bernstein:
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Theorem. If |S| 6 |T | and |T | 6 |S|, then |S| = |T |. In other words, if there is a matching

between S and a subset of T , and there is a matching between T and a subset of S, then

there is a matching between S and T .

The proof is not terribly difficult, but we will omit it. It can be presented in about

one lecture in a typical undergraduate class, but this is more time than we want to devote

to the subject. However we feel it is important to at least state the result; otherwise it is

not clear that it is reasonable to rank sets according to their size the way we would like.

Let us conclude with the observation that |R2| = |R|. Here R2 = {(x, y) : x, y ∈ R}
which may be identified as the set of points in the Euclidean plane. Since |(0, 1)| = |R|, it

is enough to find a bijection between the set of points in the square (0, 1)2 = {(x, y) : 0 <

x < 1, 0 < y < 1} and the set of points in the open interval (0, 1). Such a correspondence

is given by

(0 . x1 x2 x3 x4 . . . , 0 . y1 y2 y3 y4 . . .) ↔ 0 . x1 y1 x2 y2 x3 y3 x4 y4 . . . .

Once again there is a slight defect in this correspondence, due to the fact that some real

numbers have two different decimal expansions. This obstacle can be easily overcome using

the Cantor-Schröder-Bernstein Theorem. A similar argument works for all n ∈ N to show

that |Rn| = |R|. We see that there are just as many points in a single interval such as

(0, 1), as there are in R3. Does this say that there are just as many points on a line segment

as there are in the entire universe? It does, except for the fact that real numbers do not

strictly represent points on a physical line, nor does every point in R3 strictly represent a

point in physical space. But these matters are more metaphysical than mathematical. . .
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