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Fact : 110,171 = 1*31 (o, 43=(0,15×10,1)×10, D= flag ,z) :
Basic idea of the proof : 110 , DI = 110,1731 O - x.gas I }

Bijection :
a ↳ (Oa,aqaaqoqj . . , 0.995%9,4

' '

, 0.9969g 9,2Gt
Kaci 0.1415%2,635358. . - ↳ (0.1565 . . .

,
0.4958 .

.
.

,
0.1239 - . . )

A = 0.91929394 As 969, as 9g 9,0 . . .

=
9
,
-15

'

t ai to tag . 10-3+94.10-4t . - -

,
Q'if 90, 1,2 , - .- ,9)



Yo, DK 11131
'

see video on cardinality

Ho
,
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151 = 111231 and this bijection can be given constructively ie . by an explicit formula

( in particular this is a theorem in ZF
,
not requiring the Axiom

of choice)
There is a bijection lo , D → lo , D ' but noHill -- 1101151
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continuous bijection .

However there is a continuous surjection
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Fact : There is a set of open intervals
in R of total length less than t which covers

all the rational members
.
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Once again the set of intervals can be given constructively ie . explicitly with no need for

the Axiom of choice .
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what is a (Riemann) integral ? ie . the integral as defined in Calculus I- I ?

Suppose f : fails]- IR . We want to define fab fix) dx . We start with lower and upper

bounds for the integral ( these being upper and lower Riemann Suns) .

We then take sap { lower Riemann Sms } and inf 9 upper Riemann
Suns}

.
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The Riemann Suns corresponding to the partition a = xo Ex, s x, e
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We can 't just let n→ a . By the Least Upper Bound Property , Saps lower bonds}
exists and if { upper bonds } exists .

And

sup 9 lower bonds } E int { upper bounds } .

If these two values agree ,

this gives a definite value for fabfhddx .
For lots of functions leg .

the Heaviside function and for all continuous functions)
,

this works . For Dirichlet 's function
,

the Riemann integral fo
'

ga) dx is undefined .



why ? For Dirichlet 's function guy , flo ,
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For the function um
, Sup flower sums } s fo
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Note : ulx) has infinitely many discontinuities but it is not discontinuous everywhere .

uk) is continuous on a set of
open

intervals inside fo
,
i] of total length t

.

The total length of the Cantor set C (where u⇒ ) is 0 .

However C is uncountable i KI = IRI . why ?

Every at lo ,
D has a ternary expansion

a = 0
.
a. a 29394 95 .
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The points in C are those with a; E Eo, 23 only .

ICI = HR f = 16, D ) .

A bijection C → ( o , I]
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.
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If two functions f and g agree except at a single point , the fabfixsdxfgalxldx
It ¥8 The same Holds for changing a function at any

finite number of points .

We want to be able to measure sets to distinguish their site
,

not as cardinality ,
but

length ( in one dimension) , area ( in two dimensions)
,
volume ( in 3 dimensions)

,

etc
.

Defining measure of a set is equivalent to being able to integrate .

In one dimension , y ( laid ) = b-a for a e b . (the length )

Geek Ambala)
In two dimensions , b ( la is] x k , d] ) = (b-a) (d-c)

it ( Cartesian product { lay ) : XE la , b) , ye Ec , d ]} .

Borel measure extends this notion to larger sets and more complicated constructions.

Borel measure extends to Lebesgue measure
which is the gold standard for measuring sets.

Lebesgue measure of A E Rh is denoted b CA) .



b ( la
,
b)) = b -a far as b IR = LI la } but this is not a

measurable
at IR countable union

HA) > o for all AA .

so HR) t o .

Ha3) = 0
Recall

,
as observed about 5 slides back

,

> ( AUB) = HA )t NB )
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( disjoint union .
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This extends fo countable disjoint unions :
set ¥sgw measure a l .

A
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,

Hail SIS otmcaurezero are sets which can

be covered by countable unions of intervals
If AE B then HA) E NB ) . of total length as small as we want

Hoh) = 0 .

This follows from the Cie .

for every e > o
,
the set is covered by intervals

properties above : • of total length a e ) . Such sets are considered

Q= {a, .ae
,
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'negligible

'

in the sense of length ie .
measure .

Sets of Lebesgue measure zero have
it '
✓ singleton sets g CA) = o .

• (sets with single elements )
⇒ HQ) = ¥

,

> ( 9%3) eg . HQ)=o so Q has Lebesgue
co

measure zero .

= 20 = 0 .
Also the Cantor set C C lo

,
it has measure zero .
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Q is cantabile and C is uncountable so from the perspective of cardinality , there is
a big difference in site between these two sets .

But in terms of length ( Lebesgue measure)
,

both have measure zero : Ha) -

- Sfc ) -- o .

Connection between measure and integration :

Given a set AE R
,
its charar.CI#c function µ,

= { I if xf A

+
A L O if x# A
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• -• laid Similarly ,

¥5 f: Xgagcxldx = o = 21431 II.cxidx = dkto
where C C lo, D is the Cantor

In general, f! Xalxldx = WA) . set

( and this integral is defined as

Xq= g is Dirichlet 's function both a Riemann integral and

↳Fai⇒ dx = HQ) - o .
this however is the Lebesgue integral ,

as a Lebesgue integral) .

-
-

not the Riemann integral of Caleales I and I ) .

The Riemann integral is undefined .



If f and g agree except at a finite member of points , fabfhadx = fab glxidx
-

f f
laid

More generally ,
if f and

g agree almost everywhere (ie . except on a set of measure zero )
then fabfixidx = Jabgcxldx for every interval fails ] .

f- and g agree almost everywhere ( f andy agree a.e. )

← xER : flat gcxl} ) = 0
This is an important example of an equivalence relation .

If f- g a.e .
and g -- L a.e.

then f -- h a.e .

f-= f a e
.

If f-g a.e .
then g

-

-f a.e
.



HAUB) ⇒ (A) t HB) for all measurable sets A,B .

If B is a closed unit hall in R
' then d IB) = 4¥ (volume )

a
radius r

.

B = A ,
u .. . was where Ai

,
A- can be repositioned to formtwo wit balls

of total Lebesgue measure Hohne) Ef .

X CB) I dfAt = 2dB) .

undefined
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,

. . -

,
As are non

- measurable .


