
Solutions to HW4

1. Let fn(x) = x2

n2+x2 and f(x) =
∞∑
n=1

fn(x). Note that all values of these functions are

non-negative.

(a) For each x ∈ R, the series for f(x) converges (absolutely) since f(x) 6 x2
∑
n

1
n2

= π2x2

6 . (Here we have used the value
∑∞
n=1

1
n2 = π2

6 ; but all that we actually

need is the fact that
∑∞
n=1

1
n2 converges.) In particular, f : R → R is a well-

defined function.

(b) Let r = max{|a|, |b|}, so that [a, b] ⊆ [−r, r]. Clearly |fn(x)| 6 r2

n2 for all n > 1

and all x ∈ [a, b]. Since
∞∑
n=1

r2

n2 = π2r2

6 converges, by the Weierstrass M-test the

series f(x) =
∑
n fn(x) converges uniformly and absolutely on [a, b].

(c) The series
∑
n fn(x) does not converge uniformly on R. We show this by contra-

diction using ε = 1
2 . We denote Sn(x) = f1(x) + f2(x) + · · · + fn(x). If Sn → f

uniformly on R, then there exists N such that |Sn(x)− f(x)| < 1
2 for all n > N

and all x ∈ R. In particular, we have
∑
n>N fn(x) < 1

2 for all x ∈ R. Now choose

an integer n > N and fix a value of x > n to get

fn(x) =
x2

n2 + x2
=

1
n2

x2 + 1
>

1

1 + 1
=

1

2
,

a contradiction.

2. Since A is compact, the sequence (an)n has a convergent subsequence (ank
)k → a ∈ A.

Here (nk)k is an increasing sequence of positive integers, and in particular (nk)k →∞.

Now

|bnk
− a| 6 |bnk

− ank
|+ |ank

− a| 6 1
nk

+ |ank
− a| → 0

as k →∞. Thus (bnk
)k → a. Since B is also compact, this proves that a ∈ B. Since

a ∈ A ∩B, we have A ∩B 6= ∅.

3. (a) We have f(x) = limn→∞
nx

(1+nx2)2 = 0
1 = 0 by the limit laws.

(b) The convergence fn → f cannot be uniform on R, as we show by contradiction.

If the convergence were uniform, then for all ε > 0, there would exist N such

that |fn(x) − f(x)| < ε for all n > N and all x ∈ R. In particular for ε = 0.1,



this means that there exists N such that |fn(x)| < 0.1 for all n > N and all

x ∈ R. In this case choose a positive integer n > N and take x = 1
n to obtain

fn(x) = 1
(1+ 1

n )2
> 1

4 . This contradicts |fn(x)| < 0.1.

(c) Exactly the same argument as in (b) shows that the convergence fn → f cannot

be uniform on any closed intervals containing 0 (i.e. intervals [a, b] with a < b

and a 6 0 6 b) since such intervals contain infinitely many points of the form

± 1
n . However, convergence is uniform on closed intervals not containing 0. We

consider a closed interval [a, b] or [a,∞) with a > 0. (The same argument works

on closed subsets of (−∞, 0) since each fn is an odd function.) Given ε > 0 and

a > 0, take N = 1
a3ε . Whenever n > N and x > a, we have

|fn(x)| = nx

(1 + nx2)2
<

nx

(nx2)2
=

1

nx3
6

1

na3
< ε

which shows that the convergence fn → 0 is uniform on [a,∞) and on [a, b].

(d) Substituting u = 1+nx2 gives
∫ 1

0
fn(x) dx =

∫ 1

0
nx dx

(1+nx2)2 = 1
2

∫ 1+n

1
u−2du =[

− 1
2u

]1+n
1

= 1
2

(
1− 1

n+1

)
= n

2(n+1) . Also
∫ 1

0
f(x) dx =

∫ 1

0
0 dx = 0.

(e) No; we have
∫ 1

0
fn(x) dx = n

2(n+1) →
1
2 as n→∞. This differs from

∫ 1

0
f(x) dx =

0. This independently confirms that the convergence fn → f is not uniform.


