Solutions to HW4

- 1. Let $f_n(x) = \frac{x^2}{n^2 + x^2}$ and $f(x) = \sum_{n=1}^{\infty} f_n(x)$. Note that all values of these functions are non-negative.
 - (a) For each $x \in \mathbb{R}$, the series for f(x) converges (absolutely) since $f(x) \leq x^2 \sum_n \frac{1}{n^2} = \frac{\pi^2 x^2}{6}$. (Here we have used the value $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$; but all that we actually need is the fact that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.) In particular, $f : \mathbb{R} \to \mathbb{R}$ is a well-defined function.
 - (b) Let $r = \max\{|a|, |b|\}$, so that $[a, b] \subseteq [-r, r]$. Clearly $|f_n(x)| \leq \frac{r^2}{n^2}$ for all $n \geq 1$ and all $x \in [a, b]$. Since $\sum_{n=1}^{\infty} \frac{r^2}{n^2} = \frac{\pi^2 r^2}{6}$ converges, by the Weierstrass M-test the series $f(x) = \sum_n f_n(x)$ converges uniformly and absolutely on [a, b].
 - (c) The series $\sum_n f_n(x)$ does *not* converge uniformly on \mathbb{R} . We show this by contradiction using $\varepsilon = \frac{1}{2}$. We denote $S_n(x) = f_1(x) + f_2(x) + \cdots + f_n(x)$. If $S_n \to f$ uniformly on \mathbb{R} , then there exists N such that $|S_n(x) f(x)| < \frac{1}{2}$ for all n > N and all $x \in \mathbb{R}$. In particular, we have $\sum_{n>N} f_n(x) < \frac{1}{2}$ for all $x \in \mathbb{R}$. Now choose an integer n > N and fix a value of x > n to get

$$f_n(x) = \frac{x^2}{n^2 + x^2} = \frac{1}{\frac{n^2}{x^2} + 1} \ge \frac{1}{1+1} = \frac{1}{2},$$

a contradiction.

2. Since A is compact, the sequence $(a_n)_n$ has a convergent subsequence $(a_{n_k})_k \to a \in A$. Here $(n_k)_k$ is an increasing sequence of positive integers, and in particular $(n_k)_k \to \infty$. Now

$$|b_{n_k} - a| \le |b_{n_k} - a_{n_k}| + |a_{n_k} - a| \le \frac{1}{n_k} + |a_{n_k} - a| \to 0$$

as $k \to \infty$. Thus $(b_{n_k})_k \to a$. Since B is also compact, this proves that $a \in B$. Since $a \in A \cap B$, we have $A \cap B \neq \emptyset$.

- 3. (a) We have $f(x) = \lim_{n \to \infty} \frac{nx}{(1+nx^2)^2} = \frac{0}{1} = 0$ by the limit laws.
 - (b) The convergence $f_n \to f$ cannot be uniform on \mathbb{R} , as we show by contradiction. If the convergence were uniform, then for all $\varepsilon > 0$, there would exist N such that $|f_n(x) - f(x)| < \varepsilon$ for all n > N and all $x \in \mathbb{R}$. In particular for $\varepsilon = 0.1$,

this means that there exists N such that $|f_n(x)| < 0.1$ for all n > N and all $x \in \mathbb{R}$. In this case choose a positive integer n > N and take $x = \frac{1}{n}$ to obtain $f_n(x) = \frac{1}{(1+\frac{1}{n})^2} \ge \frac{1}{4}$. This contradicts $|f_n(x)| < 0.1$.

(c) Exactly the same argument as in (b) shows that the convergence $f_n \to f$ cannot be uniform on any closed intervals containing 0 (i.e. intervals [a, b] with a < band $a \leq 0 \leq b$) since such intervals contain infinitely many points of the form $\pm \frac{1}{n}$. However, convergence is uniform on closed intervals *not* containing 0. We consider a closed interval [a, b] or $[a, \infty)$ with a > 0. (The same argument works on closed subsets of $(-\infty, 0)$ since each f_n is an odd function.) Given $\varepsilon > 0$ and a > 0, take $N = \frac{1}{a^3\varepsilon}$. Whenever n > N and $x \ge a$, we have

$$|f_n(x)| = \frac{nx}{(1+nx^2)^2} < \frac{nx}{(nx^2)^2} = \frac{1}{nx^3} \le \frac{1}{na^3} < \varepsilon$$

which shows that the convergence $f_n \to 0$ is uniform on $[a, \infty)$ and on [a, b].

- (d) Substituting $u = 1 + nx^2$ gives $\int_0^1 f_n(x) dx = \int_0^1 \frac{nx dx}{(1+nx^2)^2} = \frac{1}{2} \int_1^{1+n} u^{-2} du = \left[-\frac{1}{2u}\right]_1^{1+n} = \frac{1}{2} \left(1 \frac{1}{n+1}\right) = \frac{n}{2(n+1)}$. Also $\int_0^1 f(x) dx = \int_0^1 0 dx = 0$.
- (e) No; we have $\int_0^1 f_n(x) dx = \frac{n}{2(n+1)} \to \frac{1}{2}$ as $n \to \infty$. This differs from $\int_0^1 f(x) dx = 0$. This independently confirms that the convergence $f_n \to f$ is not uniform.