
Solutions to HW3

1. It is useful to observe that the minimum element of A is 1
2 . (If m,n ∈ N then

m+n
mn = 1

m + 1
n 6 1 + 1 = 2 so mn

m+n > 1
2 .)

(a) The sequence
(

10n
10+n

)
n

of distinct points in A converges to 10 ∈ A′.
(b) We show that A′ = N = {1, 2, 3, . . .}. Since each m ∈ N is the limit of a sequence

of distinct points
(
mn
m+n

)
n

in A, we get m ∈ A′. This proves N ⊆ A′.
Conversely, suppose x ∈ A′. Then x is a limit of a sequence (xk)k in A,

where xk = mknk

mk+nk
. Here (mk)k and (nk)k are sequences in N. Since (xk)k

has infinitely many distinct terms, the sequences (mk) and (nk) cannot both be

bounded; so without loss of generality, (nk)k is unbounded. Thus (nk)k has a

strictly increasing subsequence. Without loss of generality, (nk)k is increasing;

otherwise we may replace it by an increasing subsequence. Since x is positive, we

may consider
1
x = lim

k→∞
1
xk

= lim
k→∞

(
1
mk

+ 1
nk

)
= lim
k→∞

1
mk

since (nk)k → ∞. Thus (mk)k is a convergent sequence of positive integers.

This means that (mk)k is constant for all sufficiently large k. In other words,

there exist positive integers m,N such that mk = m for all k > N . This gives

x = m ∈ N as claimed.

(c) Each positive integer k ∈ N has the form k = (2k)(2k)
2k+2k ∈ A. Thus A ⊇ N = A′, so

A is closed.

2. This property fails. For example, consider

f(x) = g(x) =

{
0, if x 6= 0;

1, if x = 0.

Then lim
x→0

f(g(x)) = 1 whereas f(g(0)) = 0. Based on the limit laws (from any calculus

textbook), it’s clear that a counterexample requires discontinuity; and in fact when

you try discontinuous functions, it is easy to find lots of counterexamples.

3. Every open set A ⊆ R is a union of open intervals of the form (r, s) with rational

endpoints r, s. Indeed, if x ∈ A then there is an open interval (a, b) ⊆ A containing

x (by condition (i) as stated in the assignment); then we can find rational numbers

r ∈ (a, x) and s ∈ (x, b) since Q is dense in R. This gives x ∈ (r, s) ⊆ A. Choosing



such an open interval (r, s) for each x ∈ A allows us to express A as a union of open

intervals with rational endpoints.

All that remains is to observe that there are only countably many intervals (r, s)

with rational endpoints, since there are only countably many choices of a and b in Q.

In order to fully express this, however, I will want to carefully distinguish the ordered

pair (r, s) from the open interval (r, s). (Unfortunately we use the same notation for

both concepts; so I will say in words to which I am referring in each case.) There

are countably many ordered pairs (r, s) since there are countably many choices for r

and countably many choices for s. (As in the video on Cardinality, we can enumerate

Q = {a1, a2, a3, . . .} and then consider an infinite ‘table’ with the ordered pair (am, an)

in rom m and column n. There is a ‘snake-like’ path through all the entries of the

table, showing us that there is a sequence containing all ordered pairs (am, an) ∈ Q2.)

Now if we omit all the ordered pairs (am, an) for which am > an, we are left with a

countable set of ordered pairs (am, an) having am < an. These ordered pairs define

the set of all open intervals having rational endpoints; and so there are countably

many such intervals. So A contains only a countable number of open intervals with

rational endpoints.

4. (a) Whenever m > n,

|am − an| =
∣∣∣∣m−1∑
k=n

(ak+1 − ak)

∣∣∣∣ 6 m−1∑
k=n

∣∣ak+1 − ak
∣∣ 6 m−1∑

k=n

bk.

(b) Let ε > 0. Since
∑
n bn is a convergent series with positive terms, its partial sums

sn =
∑
k6n bk form a bounded weakly increasing sequence with limit L. So we

may choose N > 0 such that L − ε < sN 6 L. For all numbers m > n > N , we

have

|am − an| 6
m−1∑
k=n

bk = sm − sn < ε.

This inequality holds more generally whenever m,n > N , so the sequence (an)n

is Cauchy.

(c) Since R is complete, (an)n converges.

5. It is easy to see in each case (a)–(d) that the indicated set is neither empty nor R, so

it cannot be both open and closed.

(a) This set is open since it is f−1((5,∞)), the preimage of an open set under a

continuous function f(x) = x sinx. It is not closed for the reasons indicated

above (0 /∈ f−1((5,∞)) and 5π
2 ∈ f

−1((5,∞))).



(b) Since Q is neither open nor closed, its complement R−Q is also neither open nor

closed. Again this is because both Q and R−Q are dense in R. (Every nonempty

open interval contains both a rational and an irrational, so neither Q nor R−Q
contains a nonempty open set.)

(c) Let A be the set of all rational numbers having denominator at most 100. Then A

is closed; and as indicated above, it cannot be open. Note that A′ = ∅ since every

point of A is isolated. (There are only finitely many elements of A in any bounded

interval; so given a ∈ A, there exists δ > 0 such that (a − δ, a + δ) contains no

points of A − {a}.) Alternatively, the complement U = R − A is open. This is

because given any u ∈ U , there there exists δ > 0 such that (a− δ, a+ δ) contains

no points of A, i.e. (a− δ, a+ δ) ⊂ U .

(d) Let S be the set of all real numbers having a decimal expansion containing the

digit 7. Then 0 /∈ S (since 0 has a unique decimal expansion 0.00000 . . ., without

the digit 7). And S contains a sequence (sn)n → 0 where sn = 7 × 10−n. Since

S does not contain 0 ∈ S′, S is not closed.

Also S is not open since its complement T = R − S contains a sequence

(bn)n → 7 where bn = 7− 10−n. Each bn has two decimal expansions, neither of

which have 7 as a digit; for example, b3 = 6.9990000 . . . = 6.9989999.... Since T

does not contain 7 ∈ S, T is not closed, so S is not open.


