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1. (a) The function f is continuous at u € R iff w is irrational. To show this, it suffices
to prove that lim,_,, f(z) = 0 for every u € R. So let ¢ > 0, there are only
finitely many rationals in (0,¢) having denominator > ¢; and so we may choose
d > 0 such that none of these rationals satisfy 0 < |z —u| <. So 0 < f(z) <e
whenever 0 < |z — u| < 4. This proves the result.

(b) On every interval, f has minimum value 0 so the lower Riemann sum is 0. Here
are the maximum values of f on the 4 required subintervals:

k 1 2 3 4
interval | [0 i] B %1 53 | B
maximum | f(0)=1| f(3) =4 | f(H) =1 | /W) =1

so the upper Riemann sum is Z(l + 5 + 5 + 1) = 0.75.

(¢) On every interval, f has minimum value 0 so the lower Riemann sum is 0. Here
are the maximum values of f on the 20 required subintervals:

k 1 2 3 4 5 6 7
interval | [0,.05] | [.05,.1] | [.1,.15] | [.15,.2] | [.2,.25] | [.25,.3] | [.3,.35]
maximum | f(0)=1 | f(55)=15 | f(7)=7 | fG)=5 | f(B)=1 | FG)=1 | F(3)=3

k 8 9 10 11 12 13 14
interval | [.35,.4] | [4,.45] | [45,.5] | [.5,.55] | [.55,.6] | [.6,.65] | [.65,.7]
maximum | f(3)=% | F3)=3% | f(3)=3 | f(G)=5 | (D=3 | fB)=3 | F(B)=3

k 15 16 17 18 19 20
interval | [.7,.75] | [.75,.8] | [.8,.85] | [85,.9] [.9,.95] | [.95,1]
maximum | f(3)=73 | f(D)=1 | F(§)=5 | F(D)=7 | fGg)=15 | F(1)=1

so the upper Riemann sum is

1 ({411 1 1 1 1,11 ;11 1 1, 1,1 1 ;1,1 1 1)_ 667
2_0(1+1_0+7+5+Z+71+§+5+5+§+§+5+5+§+Z+Z+5+7+ﬁ+1) = 3100 ~ 0.31762.
(d) In fact fo x)dx = 0. With the Lebesgue integral, this fact holds because f =0
almost everywhere, i.e. except on the rationals (a set of measure zero). This
follows because Q is countable. But the Riemann integral is also zero. Unlike
Dirichlet’s function discussed in class (where f(x) = 1 for every rational number)



which is not Riemann integrable, for the f in this problem, the infimum of the
upper Riemann sums is zero so the integral is zero. You were not asked to prove
this here, although it isn’t hard; I have a included a proof below.

To show that fol f(x)dz = 0, recall (as noted above) that all lower Riemann sums are zero.

Given ¢ > 0, it suffices to show that we can find an upper Riemann sum less than . Let .S

be the set of rational numbers in [0, 1] having denominator less than % (in lowest terms).

This is clearly a finite set; so take N = |S| < co. Take a positive integer n > % Consider

the partition of [0, 1] into n subintervals of equal width Az = % The corresponding upper

Riemann sum has n positive terms, including

e at most N terms based on subintervals [x;_1, ;] containing one or more points of S.

Since each such subinterval has width % < =% the contribution of these terms to the

2N

upper Riemann sum is at most N % < 5. Also

e all remaining terms, based on subintervals [z;_1,x;] not containing any point of S.

These intervals have total width less than 1; and f(x) is bounded above by $ on these

intervals (since any rational numbers in such intervals have denominator less than %)

So the total contribution to the upper Riemann sum coming from such terms is less
than 5.

Since fol f(z)dx < & for any positive &, we must have fol f(z)dx = 0.

2. (a)

(b)
(c)

My calculator displays 0.739085133. Yours should give an answer very close to
this.

|0, if n=0;
An = cos(ap—1), forn=1,23....

The function g(x) = x — cosz is strictly increasing since ¢'(z) = 1 + sinx > 0
(and ¢'(x) > 0 except at isolated points +m,+37,+57,...). Since g is strictly
increasing, there is at most one solution of g(z) = 0. Since ¢g(0) = —1 and
g(5) =1, g has a root a € (0,1) by the Intermediate Value Theorem. So this is
the unique real root of x = cosx.

The Mean Value Theorem for Derivatives asserts that for any differentiable func-
tion f and points x # a, there exists y between x and a such that f(x) — f(a) =
f'(y)(x — a). Applying this theorem to the case f(x) = cosz and f'(z) = —sinx
gives the required result.

There is more than one choice of interval (and corresponding choice of ¢) which
will satisfy the given conditions. But in order for (e) to be relevant to the induc-
tion argument in (f), we actually want an interval containing the terms of our
sequence (a, ). For this purpose I will choose the interval [0, 1] on which the sine
function is increasing. Thus [siny| < sinl ~ 0.84147 for all y € [0,1]. So we



may choose ¢ = 0.85 as a bound for the sine function on the interval [0, 1]. This
interval contains a ~ 0.739; so assuming x is also in the interval [0, 1], by (d) we

have |cosz — a| < c¢|z — a|]. (Note here that cosa = a.)

We prove by induction that for all n, a,, € [0,1] and |a,, — a] < ¢™a. These
conditions hold for n = 0 since ag = 0 € [0,1] and |ag — a| = a = a. Now given
any non-negative integer n for which the desired conditions hold, since a,, € [0, 1]

s

we have 0 < a, < § which yields a, 1 = cosa, € [0,1]. Moreover by (e),

a —al = |cos(a,,) —al <cla, —a|l <cc"a=c
|@p+1 — al = [cos(an) — al < cla, — a

So by induction, we have validated both of our claims.

Since |a,, —a| < ¢™a for all n where ¢ € (0, 1), we can make both sides arbitrarily
small by choosing n sufficiently large. This gives an easy proof that (a,) — a.
Alternatively, one may cite the Squeeze Theorem: The bounds in (f) are easily
rewritten as (1 — ¢")a < a, < (1 4 ¢")a for all n. Here the upper and lower

bounds both converge to the same limit a as n — oo, so (a,) — a.

This follows by contradiction. If a; > % for infinitely many values ¢ € I, then
choosing these indices, we obtain a divergent series a;, + a;, + a;, + - - -, contrary

to the observations offered in the statement of the problem.

As shown in (a), each of the sets {i € I : a; > 1} is finite. So J;—,{i €I : a; >
%} is a countable union of finite sets, hence countable. (Indeed any countable

union of countable sets is still countable, as indicated in the video on Cardinality.)

Since a; is positive for every 7 € I, there is some natural number n for which % <
a;. (This follows from the Archimedean property as proved in the instructional
video on the density of Q in R.) So I =J;~ {i € I : a; > 1}, which we have

seen to be countable.

smn‘ 1

This series converges since it converges absolutely. Note here that ‘ 7

where )~ converges (this is a p-series with p = 2 > 1; or just use the Integral
Test with foo 9z =1 < o0).

This series converges. Although the sequence (’;—f) is not decreasing, it is de-
creasing for n > 14; moreover, (2—10) — 0. So we may disregard the first few

terms and apply the Leibniz Test (also known as the Alternating Series Test).

This series diverges. This is an example of a telescoping series; the partial sums

exhibit cancellation leading to



n

s = Y (VEFT- VE)

= (V1) + (0 -38) + (M- 3Q) + (W M)+ + (VarT -3
=vn+l—1— o0

This series diverges. As explained in the videos, 1+%+%—|— e +% <1l+1Inn. Al
we require here is the much more obvious (and weaker) result that 1+%+%+ e —i—%

< n which yields
1 1
>

I e

So the given series diverges by comparison with the harmonic series.

This series converges. Note that the geometric series Y - c¢"a = T converges

since ¢ € (0,1). Now use #2(f) to compare > >~ |a, — a| with Y~ ¢™a. This
shows that the given series converges (in fact, absolutely).



