
Solutions to HW2

1. (a) The function f is continuous at u ∈ R iff u is irrational. To show this, it suffices

to prove that limx→u f(x) = 0 for every u ∈ R. So let ε > 0, there are only

finitely many rationals in (0, ε) having denominator > ε; and so we may choose

δ > 0 such that none of these rationals satisfy 0 < |x− u| < δ. So 0 6 f(x) < ε

whenever 0 < |x− u| < δ. This proves the result.

(b) On every interval, f has minimum value 0 so the lower Riemann sum is 0. Here

are the maximum values of f on the 4 required subintervals:

k 1 2 3 4

interval [0, 14 ] [ 14 ,
1
2 ] [ 12 ,

3
4 ] [ 34 , 1]

maximum f(0) = 1 f( 1
2 ) = 1

2 f( 1
2 ) = 1

2 f(1) = 1

so the upper Riemann sum is 1
4

(
1 + 1

2 + 1
2 + 1

)
= 0.75.

(c) On every interval, f has minimum value 0 so the lower Riemann sum is 0. Here

are the maximum values of f on the 20 required subintervals:

k 1 2 3 4 5 6 7
interval [0, .05] [.05, .1] [.1, .15] [.15, .2] [.2, .25] [.25, .3] [.3, .35]

maximum f(0)=1 f( 1
10 )= 1

10 f( 1
7 )= 1

7 f( 1
5 )= 1

5 f( 1
4 )= 1

4 f( 1
4 )= 1

4 f( 1
3 )= 1

3

k 8 9 10 11 12 13 14
interval [.35, .4] [.4, .45] [.45, .5] [.5, .55] [.55, .6] [.6, .65] [.65, .7]

maximum f( 2
5 )= 1

5 f( 2
5 )= 1

5 f( 1
2 )= 1

2 f( 1
2 )= 1

2 f( 3
5 )= 1

5 f( 3
5 )= 1

5 f( 2
3 )= 1

3

k 15 16 17 18 19 20
interval [.7, .75] [.75, .8] [.8, .85] [85, .9] [.9, .95] [.95, 1]

maximum f( 3
4 )= 1

4 f( 3
4 )= 1

4 f( 4
5 )= 1

5 f( 6
7 )= 1

7 f( 9
10 )= 1

10 f(1)=1

so the upper Riemann sum is

1
20

(
1+ 1

10+ 1
7+ 1

5+ 1
4+ 1

4+ 1
3+ 1

5+ 1
5+ 1

2+ 1
2+ 1

5+ 1
5+ 1

3+ 1
4+ 1

4+ 1
5+ 1

7+ 1
10+1

)
= 667

2100 ≈ 0.31762.

(d) In fact
∫ 1

0
f(x) dx = 0. With the Lebesgue integral, this fact holds because f = 0

almost everywhere, i.e. except on the rationals (a set of measure zero). This

follows because Q is countable. But the Riemann integral is also zero. Unlike

Dirichlet’s function discussed in class (where f(x) = 1 for every rational number)



which is not Riemann integrable, for the f in this problem, the infimum of the

upper Riemann sums is zero so the integral is zero. You were not asked to prove

this here, although it isn’t hard; I have a included a proof below.

To show that
∫ 1

0
f(x) dx = 0, recall (as noted above) that all lower Riemann sums are zero.

Given ε > 0, it suffices to show that we can find an upper Riemann sum less than ε. Let S

be the set of rational numbers in [0, 1] having denominator less than 2
ε (in lowest terms).

This is clearly a finite set; so take N = |S| <∞. Take a positive integer n > 2N
ε . Consider

the partition of [0, 1] into n subintervals of equal width ∆x = 1
n . The corresponding upper

Riemann sum has n positive terms, including

• at most N terms based on subintervals [xi−1, xi] containing one or more points of S.

Since each such subinterval has width 1
n <

ε
2N , the contribution of these terms to the

upper Riemann sum is at most N · 1n <
ε
2 . Also

• all remaining terms, based on subintervals [xi−1, xi] not containing any point of S.

These intervals have total width less than 1; and f(x) is bounded above by ε
2 on these

intervals (since any rational numbers in such intervals have denominator less than 2
ε ).

So the total contribution to the upper Riemann sum coming from such terms is less

than ε
2 .

Since
∫ 1

0
f(x) dx < ε for any positive ε, we must have

∫ 1

0
f(x) dx = 0.

2. (a) My calculator displays 0.739085133. Yours should give an answer very close to

this.

(b) an =

{
0, if n = 0;
cos(an−1), for n = 1, 2, 3, . . ..

(c) The function g(x) = x − cosx is strictly increasing since g′(x) = 1 + sinx > 0

(and g′(x) > 0 except at isolated points ±π,±3π,±5π, . . .). Since g is strictly

increasing, there is at most one solution of g(x) = 0. Since g(0) = −1 and

g(π2 ) = 1, g has a root a ∈ (0, 1) by the Intermediate Value Theorem. So this is

the unique real root of x = cosx.

(d) The Mean Value Theorem for Derivatives asserts that for any differentiable func-

tion f and points x 6= a, there exists y between x and a such that f(x)− f(a) =

f ′(y)(x− a). Applying this theorem to the case f(x) = cosx and f ′(x) = − sinx

gives the required result.

(e) There is more than one choice of interval (and corresponding choice of c) which

will satisfy the given conditions. But in order for (e) to be relevant to the induc-

tion argument in (f), we actually want an interval containing the terms of our

sequence (an). For this purpose I will choose the interval [0, 1] on which the sine

function is increasing. Thus |sin y| 6 sin 1 ≈ 0.84147 for all y ∈ [0, 1]. So we



may choose c = 0.85 as a bound for the sine function on the interval [0, 1]. This

interval contains a ≈ 0.739; so assuming x is also in the interval [0, 1], by (d) we

have |cosx− a| 6 c|x− a|. (Note here that cos a = a.)

(f) We prove by induction that for all n, an ∈ [0, 1] and |an − a| 6 cna. These

conditions hold for n = 0 since a0 = 0 ∈ [0, 1] and |a0 − a| = a = c0a. Now given

any non-negative integer n for which the desired conditions hold, since an ∈ [0, 1]

we have 0 6 an 6 π
2 which yields an+1 = cos an ∈ [0, 1]. Moreover by (e),

|an+1 − a| = |cos(an)− a| 6 c|an − a| 6 c·cna = cn+1a.

So by induction, we have validated both of our claims.

(g) Since |an− a| 6 cna for all n where c ∈ (0, 1), we can make both sides arbitrarily

small by choosing n sufficiently large. This gives an easy proof that (an) → a.

Alternatively, one may cite the Squeeze Theorem: The bounds in (f) are easily

rewritten as (1 − cn)a 6 an 6 (1 + cn)a for all n. Here the upper and lower

bounds both converge to the same limit a as n→∞, so (an)→ a.

3. (a) This follows by contradiction. If ai > 1
n for infinitely many values i ∈ I, then

choosing these indices, we obtain a divergent series ai1 + ai2 + ai3 + · · ·, contrary

to the observations offered in the statement of the problem.

(b) As shown in (a), each of the sets {i ∈ I : ai >
1
n} is finite. So

⋃∞
n=1{i ∈ I : ai >

1
n} is a countable union of finite sets, hence countable. (Indeed any countable

union of countable sets is still countable, as indicated in the video on Cardinality.)

(c) Since ai is positive for every i ∈ I, there is some natural number n for which 1
n <

ai. (This follows from the Archimedean property as proved in the instructional

video on the density of Q in R.) So I =
⋃∞
n=1{i ∈ I : ai >

1
n}, which we have

seen to be countable.

4. (a) This series converges since it converges absolutely. Note here that
∣∣ sinn
n2

∣∣ 6 1
n2

where
∑
n

1
n2 converges (this is a p-series with p = 2 > 1; or just use the Integral

Test with
∫∞
1

dx
x2 = 1 <∞).

(b) This series converges. Although the sequence
(
n10

2n

)
is not decreasing, it is de-

creasing for n > 14; moreover,
(
n10

2n

)
→ 0. So we may disregard the first few

terms and apply the Leibniz Test (also known as the Alternating Series Test).

(c) This series diverges. This is an example of a telescoping series; the partial sums

exhibit cancellation leading to



sn =
n∑
k=1

(√
k + 1−

√
k
)

=
(.........................................................√2− 1

)
+
(.........................................................√3−

.........................................................

√
2
)

+
(.........................................................√4−

.........................................................

√
3
)

+
(.........................................................√5−

.........................................................

√
4
)

+ · · ·+
(√
n+1−

.........................................................

√
n
)

=
√
n+1− 1→∞

as n→∞.

(d) This series diverges. As explained in the videos, 1+1
2+ 1

3+ · · ·+ 1
n 6 1 + lnn. All

we require here is the much more obvious (and weaker) result that 1+1
2+ 1

3+ · · ·+ 1
n

6 n which yields
1

1+ 1
2+ 1

3+ · · ·+ 1
n

>
1

n
.

So the given series diverges by comparison with the harmonic series.

(e) This series converges. Note that the geometric series
∑∞
n=0 c

na = a
1−c converges

since c ∈ (0, 1). Now use #2(f) to compare
∑∞
n=0 |an − a| with

∑∞
n=0 c

na. This

shows that the given series converges (in fact, absolutely).


