

SOLUTIONS to Test November 2023

1. Find a pair of linearly independent vectors $\{u, v\}$ spanning the plane $4x + 5y + 7z = 0$ in \mathbb{R}^3 .

Any pair of vectors in the plane will do, as long as one vector is not a scalar multiple of the other; for example

$$
\mathbf{u} = \begin{bmatrix} 7 \\ 0 \\ -4 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 0 \\ 7 \\ -5 \end{bmatrix}.
$$

A more systematic approach would be to solve the linear equation (as a system of one equation in three unknowns x, y, z , although this approach is probably overkill for such a straightforward problem. The augmented matrix for the system is $\left[4\ 5\ 7\ | \ 0\right] \sim \left[1\ \frac{5}{4}\right]$ 4 7 $\frac{7}{4}$ | 0] in reduced row echelon form. Note that x is a basic variable and y, z are free variables. The general solution is

$$
\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -\frac{5}{4}s - \frac{7}{4}t \\ s \\ t \end{bmatrix} = s\mathbf{u}' + t\mathbf{v}' \quad \text{where } \mathbf{u}' = \begin{bmatrix} -5/4 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{v}' = \begin{bmatrix} -7/4 \\ 0 \\ 1 \end{bmatrix}.
$$

This alternative basis \mathbf{u}' , \mathbf{v}' has the advantage of being found systematically by our general algorithm; but with the disadvantage of requiring ugly fractions. It is related to the previous basis **u**, **v** by $\mathbf{u}' = -\frac{5}{28}\mathbf{u} + \frac{1}{7}$ $\frac{1}{7}\mathbf{v},\,\mathbf{v}'=-\frac{7}{4}$ $\frac{7}{4}$ V.

2. Consider the three vectors

$$
\mathbf{v}_1 = \begin{bmatrix} 7 \\ -10 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}
$$

in \mathbb{R}^3 . Express the zero vector **0** as a nontrivial linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$. (This shows that the three vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent.)

Ouch! I left out a minus sign in the third vector, which meant that the three given vectors were linearly independent (you can see this from the 3×3 matrix having v_1 , v_2 , v_3 as columns, which has determinant equal to -102 . This required me to give everyone full credit on the problem.

Just as in #1, I will describe a faster, inspired way and also a slower, methodical way. By inspection we see that

$$
\mathbf{v}_2 + 2\mathbf{v}_3 = \begin{bmatrix} 0 \\ 9 \\ 11 \end{bmatrix}, \quad \mathbf{v}_1 + 7\mathbf{v}_3 = \begin{bmatrix} 0 \\ 18 \\ 22 \end{bmatrix} = 2(\mathbf{v}_2 + 2\mathbf{v}_3),
$$

from which $\mathbf{v}_1 - 2\mathbf{v}_2 + 3\mathbf{v}_3 = \mathbf{0}$ is the desired relation.

The more systematic approach would be to solve $a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3 = \mathbf{0}$ as a linear system of three equations in three unknowns a, b, c . Since this system is homogeneous, we are just looking for null vectors of the matrix with columns v_1, v_2, v_3 , thus:

$$
\begin{bmatrix} 7 & 2 & -1 \\ -10 & 1 & 4 \\ 1 & 5 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & 3 \\ -10 & 1 & 4 \\ 7 & 2 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & 3 \\ 0 & 51 & 34 \\ 7 & 2 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & 3 \\ 0 & 1 & \frac{2}{3} \\ 7 & 2 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & 3 \\ 0 & 1 & \frac{2}{3} \\ 7 & 2 & -1 \end{bmatrix}
$$

$$
\sim \begin{bmatrix} 1 & 5 & 3 \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 0 \end{bmatrix}
$$

whose null vectors have the form

$$
\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \frac{t}{3} \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}.
$$

Specifying $t = 3$ gives the nontrivial linear combination $v_1 - 2v_2 + 3v_3 = 0$ as before.

3. (20 points) In each case a linear system is given, along with its augmented matrix of coefficients, and the resulting reduced row echelon form. Write down the general solution in each case.

(a)
$$
3x - 3y + 4z = 24
$$

\n $2x - 2y + 3z = 17$
\n $\begin{bmatrix} 3 & -3 & 4 & 24 \\ 2 & -2 & 3 & 17 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & -1 & 0 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$

Introducing the parameter t for the free variable y , we obtain

$$
\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} t+4 \\ t \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.
$$

(b)
$$
x + 3y + 5z - 14w = 19
$$

\t $-x + 2y + 5z - 6w = 8$
\t $2x - y - 4z = 0$
\t $\begin{bmatrix} 1 & 3 & 5 & -14 \\ -1 & 2 & 5 & -6 \\ 2 & -1 & -4 & 0 \end{bmatrix} \begin{bmatrix} 19 \\ 8 \\ 0 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

This system is inconsistent. Since the last equation to be solved is $0 = 1$, there are no solutions.

4. (25 points) Consider the matrix

$$
A = \begin{bmatrix} 0 & 0 & 3 & 3 & 3 \\ 7 & 7 & 0 & 0 & 0 \\ 7 & 7 & 0 & 0 & 0 \\ 0 & 0 & 8 & 8 & 8 \\ 0 & 0 & 8 & 8 & 8 \end{bmatrix}
$$

.

(a) What is the rank of A?

A has rank 2 (see (c), (d)).

(b) What is the dimension of the null space of A?

By (a), Nul A has dimension $5 - 2 = 3$.

(c) Write down a basis for the row space of A.

By inspection, $(0, 0, 1, 1, 1), (1, 1, 0, 0, 0)$ form a basis for Row A.

(d) Write down a basis for the column space of A.

By inspection, $\sqrt{ }$ \mathbf{I} 0 1 1 0 0 1 \vert , $\sqrt{ }$ \mathbf{I} 3 0 0 8 8 1 form a basis for Col ^A.

(e) Write down a basis for the null space of A.

By inspection,
$$
\begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}
$$
, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ -1 \end{bmatrix}$ form a basis for NuI A.

5. Answer TRUE or FALSE to each of the following statements.

(a) T (b) T (c) F (d) T (e) T (f) T (g) T (h) F (i) T (j) F (k) T

(a) If \mathbf{u}, \mathbf{v} are two linearly independent vectors in \mathbb{R}^3 , then there must exist a vector **w** in \mathbb{R}^3 for which **u**, **v**, **w** is a basis of \mathbb{R}^3 .

Let $\mathbf{w} \in \mathbb{R}^3$ be any vector outside the plane Span $\{\mathbf{u}, \mathbf{v}\}.$

(b) If u, v, w, x are four vectors in \mathbb{R}^3 , then these four vectors must be linearly dependent.

The linear system $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} + d\mathbf{x} = \mathbf{0}$ has a nonzero solution for (a, b, c, d) . Here the coefficient matrix is 3×4 , so its reduced row echelon form has at most three pivots and therefore at least one free variable, meaning there are infinitely many solutions.

(c) If $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}$ are four vectors in \mathbb{R}^3 , then these four vectors must span \mathbb{R}^3 .

We can easily choose all four vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}$ in the (x, y) -plane (or any plane through the origin), so their span is contained in this plane.

(d) If $T : \mathbb{R}^5 \to \mathbb{R}^7$ is a linear transformation, where \mathbb{R}^5 consists of 5×1 column vectors and \mathbb{R}^7 consists of 7×1 column vectors, then there exists a 7×5 matrix A such that $T\mathbf{x} = A\mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^5$.

As explained in class, A is the matrix whose columns are the images $T\mathbf{e}_i$ of the standard basis vectors $\mathbf{e}_1,\ldots,\mathbf{e}_5$ of \mathbb{R}^5 .

(e) If A is an $m \times n$ matrix and **v** is a column vector in \mathbb{R}^n , then the vector A **v** $\in \mathbb{R}^m$ is a linear combination of the columns of A.

As explained in class, denoting the n columns of A by $\mathbf{v}_1, \ldots, \mathbf{v}_n$, and the n entries of **v** by a_1, \ldots, a_n , we have $A\mathbf{v} = a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n$.

(f) If x is in Span $\{u, v, w\}$, then we must have $Span\{u, v, w, x\} = Span\{u, v, w\}$. We are given that $\mathbf{x} = a\mathbf{u}+b\mathbf{v}+c\mathbf{w}$ for some $a, b, c \in \mathbb{R}$. Clearly

$$
\mathrm{Span}\{\mathbf{u},\mathbf{v},\mathbf{w}\}\subseteq\mathrm{Span}\{\mathbf{u},\mathbf{v},\mathbf{w},\mathbf{x}\}
$$

since for all choices of scalars c_1, \ldots, c_4 , we have

$$
c_1\mathbf{u} + c_2\mathbf{v} + c_3\mathbf{w} = c_1\mathbf{u} + c_2\mathbf{v} + c_3\mathbf{w} + 0\mathbf{x}.
$$

Conversely,

$$
\text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}\} \subseteq \text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}
$$

since for all choices of scalars c_1, \ldots, c_4 , we have

$$
c_1 \mathbf{u} + c_2 \mathbf{v} + c_3 \mathbf{w} + c_4 \mathbf{x} = c_1 \mathbf{u} + c_2 \mathbf{v} + c_3 \mathbf{w} + c_4 (a \mathbf{u} + b \mathbf{v} + c \mathbf{w})
$$

= $(c_1 + c_4 a) \mathbf{u} + (c_2 + c_4 b) \mathbf{v} + (c_3 + c_4 c) \mathbf{w}.$

(g) If M is an $m \times n$ matrix and A is its reduced row-echelon form, then every row of M must be a linear combination of the rows of A.

As explained in class. At each step during row reduction, the span of the rows is unchanged.

(h) If M is an $m \times n$ matrix and A is its reduced row-echelon form, then every column of M must be a linear combination of the columns of A.

For example, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 1 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ~ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 1 $\binom{1}{0}$. Here the original matrix has Span $\left\{ \binom{1}{1} \right\}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (the line $y = x$) as the span as its columns; but the reduced row echelon form has $\frac{\text{Span}}{\text{Span}}\left\{\left[\frac{1}{0}\right]\right\}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (the *x*-axis) as the span as its columns.

(i) The rows of the matrix $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ 3 2 4 0 $\binom{0}{0}$ are linearly independent. Clearly neither row is a scalar multiple of the other.

(j) The columns of the matrix $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ 3 2 4 0 $_{0}^{0}$] are linearly independent.

The third column is the zero vector, which is a trivial linear combination of the first two columns.

(k) The set of vectors of the form $(3s+5t^3, 2s-t^3, 7s)$ (where $s, t \in \mathbb{R}$ are arbitrary) is a subspace of \mathbb{R}^3 .

The vectors $s\mathbf{u} + t^3\mathbf{v}$ (where $\mathbf{u} = (3, 2, 7)$ and $\mathbf{v} = (5, -1, 0)$) consist of all vectors in Span $\{u, v\}$, a plane through the origin in \mathbb{R}^3 , i.e. a 2-dimensional subspace.