

| Example: Find all (x,y) such that 5x+3y=25 and 2x-7y=-31.                        |                                                 |
|----------------------------------------------------------------------------------|-------------------------------------------------|
| 4 2x-7y=-31 We are asking for the simultaneous<br>system of two equations in two | solution of a mknowns & and y.                  |
| $ \begin{array}{c} 5x + 3y = 25 & (i) \\ 2x - 7y = -31 & (2) \end{array} $       | 2×3-5(-7) = 6+35                                |
| $5x + 3y - 25$ $4iy = 205$ $2x(i) - 5x(2) = (3)$ $4iy = 5$ $(4) = (3) \div 4i$   | $2 \times 25 - 5 \times (-31) = 50 + 155 = 205$ |
| Solution: $(x,y) = (2,5)$ is the $5x + 15 = 25$<br>unique solution. $5x = 10$    |                                                 |
| Example: Find all (r.y) Such that 5x+ 3y=25 and 10x+6y=17.                       | · · · · · · · · · · · · · · · · · · ·           |
| This system is inconsistent: if has                                              | no solution.                                    |
| $5_{x} + 3_{y} = 25$ (1)<br>$10_{x} + 6_{y} = 17$ (2)                            | · · · · · · · · · · · · · ·                     |
| $0 = 33  2 \times (1) - (2)$                                                     |                                                 |
| 5x + 3y = 25                                                                     |                                                 |
| 10x + 6y = 17                                                                    | · · · · · · · · · · · · · · · · · · ·           |
| · · · · · · · · · · · · · · · · · · ·                                            |                                                 |
|                                                                                  |                                                 |

| Example: Find all (x,y) such that 5x+3y = 25 and 15                                                                                                                                         | $\mathbf{x} + \mathbf{9y} = 75.$                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| This system<br>unique:                                                                                                                                                                      | is consistent but the solution is not<br>there are infinitely many solutions. |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                       | 5x + 3y = 25 (1)<br>15x + 9y = 75 (2)                                         |
|                                                                                                                                                                                             | 0 = 0 (3) = $3x(r) - (2)$                                                     |
| 5x + 3y = 25                                                                                                                                                                                |                                                                               |
| 15x + 9y = 75                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                         |
| A system of m linear equations in n unknowns has the form<br>$\int q_{11}x_{1} + q_{12}x_{2} + \cdots + q_{m}x_{m} = b_{1}$ $\int q_{21}x_{1} + q_{22}x_{2} + \cdots + q_{2n}x_{m} = b_{2}$ | ∼                                                                             |
| $\begin{cases} a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \\ (a_{ij}, b_i - constants for i \in \{1, \cdots, m\}, j = \{1, 2, \cdots, m\}; \end{cases}$                               | x.,, x. variables representing unknowns).                                     |
| Topically, when m=n we can expect a mirgue solution;<br>m>n no solution (inconsist<br>m5n the solution                                                                                      | tent systen);                                                                 |
| note than one sould be                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                         |
|                                                                                                                                                                                             |                                                                               |

| Example with m=n=3: a<br>Kim buys a bag of 26<br>cans of tim | system of 3 linear<br>items weighing 226<br>a. (\$ 1 each, 502      | equations in 3<br>oz. costi-g #34.<br>each ) | mknowns.<br>The items included |                                               |
|--------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|--------------------------------|-----------------------------------------------|
| apples<br>loaves of bread<br>How many of each item           | (\$\$ 1 each, soe<br>(\$ 3 each, 20 of<br>did Kim brug?             | each)<br>(say x cans of th                   | ma, y apples, z loave          | s of bread)                                   |
| 5x + 3y + 20z = 226<br>x + y + 3z = 34                       | (2)<br>(3)                                                          |                                              | · · · · · · · · · · ·          |                                               |
| 2z = 8<br>z = 4<br>x + y = 22<br>5x + 3x = 146               | (3) - (1) = (4)<br>(6) = (8) - (2)<br>(7)                           |                                              |                                | - 5x22 = 196 - 110 = 36                       |
| 3y = 36<br>y = 12                                            | $(7) - 5 \times (6) = (8)$<br>$(9) = (8) \div 3$<br>(-2) = (6) - 18 |                                              |                                |                                               |
| r = 6<br>The unique solution of -                            | (10) = (6) - (7<br>this system is (x                                | ,y,≥)= (10,12,4)<br>0.1                      | (Kim bought<br>and 4 loa       | 10 cans of time, 12 apples,<br>res of bread.) |
| Check! that all three                                        | equations are satisf                                                | nea.                                         |                                |                                               |
|                                                              |                                                                     |                                              |                                | · · · · · · · · · · · · · · · · · · ·         |
|                                                              |                                                                     |                                              |                                |                                               |
|                                                              |                                                                     |                                              |                                |                                               |

|   | Ma      | heix  | f  | orn   | mbo    | fio  |      | of    | 17  | nea | ar . | sy | te         |      |   |     |     |     |     |   |   |     |   |   |     | • |   |   |     | • |     |   |   |   |     | • |   |     |
|---|---------|-------|----|-------|--------|------|------|-------|-----|-----|------|----|------------|------|---|-----|-----|-----|-----|---|---|-----|---|---|-----|---|---|---|-----|---|-----|---|---|---|-----|---|---|-----|
|   |         |       |    |       |        |      | ot   |       |     |     |      |    | . <b>r</b> | . 9  |   | z.  | to  | tal |     |   |   |     |   |   |     |   |   |   |     |   |     |   |   |   |     |   |   |     |
|   |         | ÷     | +  | y t   | ÷<br>v |      | 24   |       |     |     |      |    | ٢.         | i i  |   | 1.1 | 26  | 7   |     |   |   |     |   |   |     |   |   |   |     |   |     |   |   |   |     |   |   |     |
|   | • •     | Σx    | 4  | 891   | - 20   | )7 = | = 2  | 26    |     | -   | -7   |    | 5          | - 8  |   | 20. | 22  |     | • • |   |   |     |   |   |     |   |   |   | • • |   | • • |   |   |   |     |   |   | • • |
|   | • •     | .×    | .+ | · y · | + . 3  | 32 - | = 3  | 34.   |     |     | •    |    | L          | • 1• |   | 3 · | . 3 | 4 ] | • • |   |   | • • |   |   | • • |   | • |   | • • | • | • • |   | • | • |     |   |   | • • |
|   | • •     |       |    | • •   |        |      | • •  | • •   |     | •   |      |    |            | • •  | - |     |     |     |     |   |   | • • |   |   | • • |   |   |   | • • | • | • • |   | • | • | • • | • |   |     |
|   | · · · ( | 1 C - | 1  | - 1-  | 1.2    | 67   |      | • •   |     |     |      |    | 26         | • •  |   |     |     | •   | • • |   |   | • • |   | • | • • | • | • | • | • • | • | • • | • | • | • |     | • | • | • • |
|   |         | 5.    | 8  | . 20  | .2     | 26   | . ^  |       | 2   | · ° |      |    | 9          | • •  |   |     |     | •   | • • |   |   | • • | • | • | • • | • | • | • | •   | • | • • |   | • | • | • • |   | • | • • |
| • |         | - I.  | 1  | . 3.  | 1.     | 34 - | ι.   |       | r o | . 0 | . 2  |    | ر ہ        |      |   |     |     |     |     |   |   | • • |   | • | • • |   | • |   | • • | • | • • |   | • | • | • • | • |   | • • |
| • | • •     |       |    | •     |        | · 5  | ubto | act f | -   |     | •    |    |            | • •  |   |     |     | •   | • • |   |   | • • | • | • | • • |   | • |   | • • | • | • • |   | • | • | • • |   | • | • • |
| • | • •     |       |    | • •   |        |      | voi  | 5 3   |     |     | •    |    |            | • •  |   |     |     |     |     |   |   | • • |   | • | • • |   |   |   | • • | • | • • |   |   |   | • • | • |   | • • |
|   | • •     |       | •  | •     |        |      |      | • •   |     |     |      |    |            | • •  |   |     |     |     | • • |   |   | • • |   | • | • • |   | • |   | • • |   | • • |   |   |   | • • |   | • |     |
|   | • •     |       |    | • •   |        |      |      | • •   |     |     |      |    |            | • •  |   |     |     |     | • • |   |   |     | • |   |     |   |   |   | • • |   |     |   |   |   |     |   |   |     |
|   |         |       |    |       |        |      |      |       |     |     |      |    |            |      |   |     |     |     |     |   |   |     |   |   |     |   |   |   |     |   |     |   |   |   |     |   |   |     |
|   |         |       |    |       |        |      |      |       |     |     |      |    |            |      |   |     |     |     |     |   |   |     |   |   |     |   |   |   |     |   |     |   |   |   |     |   |   |     |
|   |         |       |    |       |        |      |      |       |     |     |      |    |            |      |   |     |     |     |     |   |   |     |   |   |     |   |   |   |     |   |     |   |   |   |     |   |   |     |
|   |         |       |    |       |        |      |      |       |     |     |      |    |            |      |   |     |     |     |     |   |   |     |   |   |     |   |   |   |     |   |     |   |   |   |     |   |   |     |
|   |         |       |    |       |        |      |      |       |     |     |      |    |            |      |   |     |     |     |     |   |   |     |   |   |     |   |   |   |     |   |     |   |   |   |     |   |   |     |
|   |         |       |    |       |        |      |      |       |     |     |      |    |            |      |   |     |     |     |     |   |   |     |   |   |     |   |   |   |     |   |     |   |   |   |     |   |   |     |
|   |         |       |    |       |        |      |      |       |     |     |      |    |            |      |   |     |     |     |     |   |   |     |   |   |     |   |   |   |     |   |     |   |   |   |     |   |   |     |
|   |         |       |    |       |        |      |      |       |     |     |      |    |            |      |   |     |     |     |     |   |   |     |   |   |     |   |   |   |     |   |     |   |   |   |     |   |   |     |
|   |         |       |    |       |        |      |      |       |     |     |      |    |            |      |   |     |     |     |     |   |   |     |   |   |     |   |   |   |     |   |     |   |   |   |     |   |   |     |
|   | • •     |       |    | • •   |        |      |      |       |     |     |      |    |            | • •  |   |     |     |     | • • |   |   |     |   |   | • • |   |   |   | • • |   | • • |   |   |   |     |   |   |     |
| • | • •     |       |    | • •   |        |      | •    | • •   |     |     | •    |    |            | • •  |   |     |     |     | • • |   |   | • • |   |   | • • |   | • |   | • • | • | • • |   | • | • | • • |   |   | • • |
|   | • •     |       |    | • •   |        |      | • •  |       |     |     | •    |    |            | • •  |   |     |     |     |     |   |   | • • |   | • | • • |   | • |   | • • | • | • • |   |   | • | • • | • |   |     |
| • | • •     |       | •  | • •   |        |      | •    | • •   | •   |     | •    |    |            | • •  |   |     |     | •   | • • | • |   | • • | • | • | • • | • | • |   | • • | • | • • | • | • | • | • • | • | • |     |
| • | • •     |       |    | • •   |        |      | •    | • •   |     |     | •    |    |            | • •  |   |     |     |     | • • |   |   | • • |   | • | • • |   | • |   | • • | • | • • |   | • | • | • • |   | • |     |
| • | • •     |       |    | • •   |        |      | •    | • •   |     |     | •    |    |            | • •  |   |     |     |     | • • |   |   | • • |   | • | • • |   | • |   | • • | • | • • |   | • | • | • • | • | • |     |
| • | • •     |       | •  | • •   |        |      | •    | • •   | •   |     | •    |    |            | • •  |   |     |     | •   | • • | • |   | • • | • | • | • • | • | • |   | • • | • | • • |   | • | • | • • |   | • | • • |
| • | • •     |       |    | •     |        |      | •    | •     |     |     | •    |    |            | •    |   |     |     | •   | • • |   |   | •   |   |   | •   |   | • | • | •   |   | • • |   |   | • | • • | * | • | • • |
| • | • •     |       |    | •     |        |      | •    | • •   |     |     | •    |    |            | • •  |   |     |     |     | • • |   |   | •   |   |   | •   |   |   |   | •   |   | • • |   |   | • |     |   |   |     |
| • | • •     |       |    | •     |        |      | •    | • •   |     |     | •    |    |            | •    |   |     |     |     | • • |   | • | •   |   |   | •   |   | • |   | •   |   | • • |   | • | • | • • |   | • | • • |
|   |         |       |    | • •   |        |      | •    | • •   |     |     | •    |    |            | •    |   |     |     |     | • • |   |   | • • |   |   | •   |   |   |   | •   |   |     |   |   | • |     |   |   | •   |